972 resultados para Inverted opals


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D metallodielectric photonic crystal (MDPC) structures. The fabrication of MDPCs with Au nanoparticles attached to the PMMA spheres core–shell particles is described. Various alternative procedures for the fabrication of photonic crystals and MDPCs are described and preliminary results on the use of an Au-based MDPC for surface-enhanced Raman scattering (SERS) are presented. These preliminary results suggest a threefold increase of the Raman signal with the MDPC as compared to PMMA photonic crystals. The fabrication of PMMA-gold and PMMA-nickel MDPC structures via an optimised electrodeposition process is described. This process results in the formation of a continuous dielectric-metal interface throughout a 3D inverted photonic crystal structure, which are shown to possess interesting optical properties. The fabrication of a robust 3D silica inverted structure with embedded Au nanoparticles is described by a novel co-crystallisation method which is capable of creating a SiO2/Au NP composite structure in a single step process. Although this work focuses on the creation of photonic crystals, this co-crystallisation approach has potential for the creation of other functional materials. A method for the fabrication of inverted opals containing silicon nanoparticles using aerosol assisted chemical vapour deposition is described. Silicon is a high dielectric material and nanoparticles of silicon can improve the band gap and absorption properties of the resulting structure, and therefore have the potential to be exploited in photovoltaics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Li-ion battery has for a number of years been a key factor that has enabled an ever increasing number of modern consumer devices, while in recent years has also been sought to power a range of emerging electric and hybrid electric vehicles. Due to their importance and popularity, a number of characteristics of Li-ion batteries have been subjected to intense work aimed at radical improvement. Although electrode material selection intrinsically defines characteristics like maximum capacity or voltage, engineering of the electrode structure may yield significant improvements to the lifetime performance of the battery, which would not be available if the material was used in its bulk form. The body of work presented in this thesis describes the relationship between the structure of electrochemically active materials and the course of the electrochemical processes occurring within the electrode. Chapter one describes the motivation behind the research presented herein. Chapter two serves to highlight a number of key advancements which have been made and detailed in the literature over recent years, pertaining to the use of nanostructured materials in Li-ion technology. Chapter three details methods and techniques applied in developing the body of work presented in this thesis. Chapter four details structural, molecular and electrochemical characteristics of tin oxide nanoparticle based electrodes, with particular emphasis on the relationship between the size distribution and the electrode performance. Chapter five presents findings of structural, electrochemical and optical study of indium oxide nanoparticles grown on silicon by molecular beam epitaxy. In chapter 6, tin oxide inverted opal electrodes are investigated for the conduct of the electrochemical performance of the electrodes under varying rate of change of potential. Chapter 7 presents the overall conclusions drawn from the results presented in this thesis, coupled with an indication of potential future work which may be explored further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dieser Arbeit wird die Synthese von Polymerkolloiden mit unterschiedlichen Formen und Funktionalitäten sowie deren Verwendung zur Herstellung kolloidaler Überstrukturen beschrieben. Über emulgatorfreie Emulsionspolymerisation (SFEP) erzeugte monodisperse sphärische Kolloide dienen als Bausteine von Polymeropalen, die durch die Selbstorganisation dieser Kolloide über vertikale Kristallisation (mit Hilfe einer Ziehmaschine) oder horizontale Kristallisation (durch Aufschleudern oder Aufpipettieren) entstehen. Durch die Kontrolle der Kugelgröße über die Parameter der Emulsionspolymerisation sowie die Einstellung der Schichtdicke der Kolloidkristalle über die Anpassung der Kristallisationsparameter ist die Erzeugung von qualitativ hochwertigen Opalen mit definierter Reflektionswellenlänge möglich. Darüber hinaus kann die chemische und thermische Beständigkeit der Opale durch den Einbau von Vernetzern oder vernetzbaren Gruppen in die Polymere erhöht werden. Die Opalfilme können als wellenlängenselektive Reflektoren in auf Fluoreszenzkonzentratoren basierenden Solarzellensystemen eingesetzt werden, um Lichtverluste in diesen Systemen zu reduzieren. Sie können auch als Template für die Herstellung invertierter Opale aus verschiedenen anorganischen Oxiden (TiO2, Al2O3, ZnO) dienen. Über einen CVD-Prozess erzeugte ZnO-Replika besitzen dabei den Vorteil, dass sie nicht nur eine hohe optische Qualität sondern auch eine elektrische Leitfähigkeit aufweisen. Dies ermöglicht sowohl deren Einsatz als Zwischenreflektor in Tandemsolarzellen als auch die Herstellung hierarchischer Strukturen über die Elektroabscheidung von Nanokristallen. In einem weiteren Teil der Arbeit wird die Herstellung funktioneller formanisotroper Partikel behandelt. Durch die Entmischung von mit Monomer gequollenen vernetzten Partikeln in einer Saatpolymerisation sind mehrere Mikrometer große Kolloide zugänglich, die aus zwei interpenetrierenden Halbkugeln aus gleichen oder verschiedenen Polymeren bestehen. Dadurch sind unter anderem Glycidyl-, Alkin- und Carbonsäuregruppen in die eine oder die andere Halbkugel integrierbar. Diese funktionellen Gruppen erlauben die Markierung bestimmter Partikelhälften mit Farbstoffen, die Beschichtung von Partikelbereichen mit anorganischen Oxiden wie SiO2 sowie die Erzeugung amphiphiler formanisotroper Partikel, die sich an Grenzflächen ausrichten lassen. Das Synthesekonzept kann - ausgehend von mittels SFEP erzeugten stark vernetzten PMMA-Partikeln - auch auf kleine Kolloide mit Größen von mehreren hundert Nanometern übertragen werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to examine the possibility of an inverted U-shaped relationship between job demands and work engagement, and whether social support moderates this relationship. Design/methodology/approach – This study uses 307 technical and information technology (IT) managers who responded to an online survey. Multiple regressions are employed to examine linear and curvilinear relationship among variables. Findings – Overall, results support the applicability of the quadratic effect of job demands on employee engagement. However, only supervisor support, not colleague support, moderated the relationship between job demands and work engagement. Originality/value – The paper is the first to shed light on the quadratic effect of job demands on work engagement. The findings have noteworthy implications for managers to design optimal job demands that increase employee engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An identified issue within higher education is the high rates of student attrition after the first year, especially in the STEM disciplines. To address this issue, it is essential to reexamine and redesign the first year curriculum to engage and retain the students' interests while also scaffolding their learning experience. This session reports on an initiative based on the principles of the “inverted curriculum” within the Bachelor of Technology (BIT) course at the Queensland University of Technology (QUT) that began in 2009 and has resulted in a reduction in first-year attrition rates from 18% in 2008 to 10% in 2009 and 2010 despite a growth in student intake of 15% to 40% in the past two years. We present the process and methods that helped achieve this and initiate a discussion on the innovations that are possible within this concept of inverted curriculum and how it can be implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an original approach for finding approximate nearest neighbours in collections of locality-sensitive hashes. The paper demonstrates that this approach makes high-performance nearest-neighbour searching feasible on Web-scale collections and commodity hardware with minimal degradation in search quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is presented. This study is based on the generalized multidimensional hybrid model, which not only includes the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent. The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only over a range of 5000-6000 cm(-1) (compared to the experimentally observed range of 10000 cm(-1) reported by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which might be necessary to fully understand the observed free energy gap dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of data structures such as inverted file, multi-lists, quad tree, k-d tree, range tree, polygon tree, quintary tree, multidimensional tries, segment tree, doubly chained tree, the grid file, d-fold tree. super B-tree, Multiple Attribute Tree (MAT), etc. have been studied for multidimensional searching and related problems. Physical data base organization, which is an important application of multidimensional searching, is traditionally and mostly handled by employing inverted file. This study proposes MAT data structure for bibliographic file systems, by illustrating the superiority of MAT data structure over inverted file. Both the methods are compared in terms of preprocessing, storage and query costs. Worst-case complexity analysis of both the methods, for a partial match query, is carried out in two cases: (a) when directory resides in main memory, (b) when directory resides in secondary memory. In both cases, MAT data structure is shown to be more efficient than the inverted file method. Arguments are given to illustrate the superiority of MAT data structure in an average case also. An efficient adaptation of MAT data structure, that exploits the special features of MAT structure and bibliographic files, is proposed for bibliographic file systems. In this adaptation, suitable techniques for fixing and ranking of the attributes for MAT data structure are proposed. Conclusions and proposals for future research are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion and impedance characteristics of an inverted slot-mode (ISM) slow-wave structure computed by three different techniques, i.e., an analytical model based on a periodic quasi-TEM approach, an equivalent-circuit model, and 3-D electromagnetic simulation are obtained and compared. The comparison was carried out for three different slot-mode structures at S-, C-, and X-bands. The approach was also validated with experimental measurements on a practical X-band ISM traveling-wave tube. The design of ferruleless ISM slow-wave structures, both in circular and rectangular formats, has also been proposed and the predicted dispersion characteristics for these two geometries are compared with 3-D simulation and cold-test measurements. The impedance characteristics for all three designs are also compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a practical linear proportional weir of simple geometric shape in the form of an inverted V-notch or inward trapezium. The flow through this weir, of half-width w and altitude d, for depths above 0.22d is proportional to the depth of flow measured above a reference plane situated at 0.08d for all heads in the range 0.22d<=h<=0.94d, with a maximum percentage deviation of ±1.5 from the theoretical discharge. The linear relationship between head and discharge is based on numerical optimization procedures. Nearly 75% of the depth of inverted V-notch can be used effectively as the measuring range. Experiments with four weirs, with different vertex angles, show excellent agreement with the theory by giving an average coefficient of discharge for each weir varying from 0.61–0.62.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 A. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is devoted to the improvement of the measuring range of inverted V-notch (IVN) weir, a practical linear sharp-crested weir, designed earlier by the writers. The range of linearity of IVN can be considerably enhanced (by more than 200%) by the addition of a retangular weir of width 0.265W (W = half crest width) at a depth of 0.735d (d = altitude of IVN), above the crest of the weir, which is equivalent to providing at this depth two vertical straight lines to the IVN, resulting in a chimney-shaped profile; hence, the modified weir is named chimney weir. The design parameters of the weir, that is, the linearity range, base flow depth, and datum constant, which fixes the reference plane of the weir, are estimated by solving the nonlinear programming problem using a numerical optimization procedure. For flows through this weir above a depth of 0.22d, the discharges are proportional to the depth of flow measured above a reference plane situated at 0.08d above the weir crest for all heads in the range 0.22d <= h <= 2.43d, within a maximum percentage deviation of ±1.5 from the theoretical discharge. A significant result of the analysis is that the same linear head-discharge relationship governing the flow through the IVN is also valid for the extended chimney weir. Experiments with three different chimney weirs show excellent agreement with the theory by giving a constant average coefficient of discharge for each weir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical study of the dynamics of photo-electron transfer reactions in the Marcus inverted regime is presented. This study is motivated partly by the recent proposal of Barbara et al. (J. Phys. Chem. 96, 3728, 1991) that a minimal model of an electron transfer reaction should consist of a polar solvent mode (X), a low frequency vibrational mode (Q) and one high frequency mode (q). Interplay between these modes may be responsible for the crossover observed in the dynamics from a solvent controlled to a vibrational controlled electron transfer. The following results have been obtained. (i) In the case of slowly relaxing solvents, the proximity of the point of excitation to an effective sink on the excited surface is critical in determining the decay of the reactant population. This is because the Franck-Condon overlap between the reactant ground and the product excited states decreases rapidly with increase in the quantum number of the product vibrational state. (ii) Non-exponential solvation dynamics has an important effect in determining the rates of electron transfer. Especially, a biphasic solvation and a large coupling between the reactant and the product states both may be needed to explain the experimental results. ©1996 American Institute of Physics