967 resultados para Inventory control.
Resumo:
Gemstone Team Small Business Solutions
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.
Resumo:
We analyze an infinite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are identically distributed random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or expected average profit over the infinite planning horizon. We show that a stationary (s,S,p) policy is optimal for both the discounted and average profit models with general demand functions. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period.
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
The main idea of this research to solve the problem of inventory management for the paper industry SPM PVT limited. The aim of this research was to find a methodology by which the inventory of raw material could be kept at minimum level by means of buffer stock level.The main objective then lies in finding the minimum level of buffer stock according to daily consumption of raw material, finding the Economic Order Quantity (EOQ) reorders point and how much order will be placed in a year to control the shortage of raw material.In this project, we discuss continuous review model (Deterministic EOQ models) that includes the probabilistic demand directly in the formulation. According to the formula, we see the reorder point and the order up to model. The problem was tackled mathematically as well as simulation modeling was used where mathematically tractable solution was not possible.The simulation modeling was done by Awesim software for developing the simulation network. This simulation network has the ability to predict the buffer stock level based on variable consumption of raw material and lead-time. The data collection for this simulation network is taken from the industrial engineering personnel and the departmental studies of the concerned factory. At the end, we find the optimum level of order quantity, reorder point and order days.
Resumo:
In this paper we first show that the gains achievable by integrating pricing and inventory control are usually small for classical demand functions. We then introduce reference price models and demonstrate that for this class of demand functions the benefits of integration with inventory control are substantially increased due to the price dynamics. We also provide some analytical results for this more complex model. We thus conclude that integrated pricing/inventory models could repeat the success of revenue management in practice if reference price effects are included in the demand model and the properties of this new model are better understood.
Resumo:
This thesis is concerned with the inventory control of items that can be considered independent of one another. The decisions when to order and in what quantity, are the controllable or independent variables in cost expressions which are minimised. The four systems considered are referred to as (Q, R), (nQ,R,T), (M,T) and (M,R,T). Wiith ((Q,R) a fixed quantity Q is ordered each time the order cover (i.e. stock in hand plus on order ) equals or falls below R, the re-order level. With the other three systems reviews are made only at intervals of T. With (nQ,R,T) an order for nQ is placed if on review the inventory cover is less than or equal to R, where n, which is an integer, is chosen at the time so that the new order cover just exceeds R. In (M, T) each order increases the order cover to M. Fnally in (M, R, T) when on review, order cover does not exceed R, enough is ordered to increase it to M. The (Q, R) system is examined at several levels of complexity, so that the theoretical savings in inventory costs obtained with more exact models could be compared with the increases in computational costs. Since the exact model was preferable for the (Q,R) system only exact models were derived for theoretical systems for the other three. Several methods of optimization were tried, but most were found inappropriate for the exact models because of non-convergence. However one method did work for each of the exact models. Demand is considered continuous, and with one exception, the distribution assumed is the normal distribution truncated so that demand is never less than zero. Shortages are assumed to result in backorders, not lost sales. However, the shortage cost is a function of three items, one of which, the backorder cost, may be either a linear, quadratic or an exponential function of the length of time of a backorder, with or without period of grace. Lead times are assumed constant or gamma distributed. Lastly, the actual supply quantity is allowed to be distributed. All the sets of equations were programmed for a KDF 9 computer and the computed performances of the four inventory control procedures are compared under each assurnption.
Resumo:
Inventory control in complex manufacturing environments encounters various sources of uncertainity and imprecision. This paper presents one fuzzy knowledge-based approach to solving the problem of order quantity determination, in the presence of uncertain demand, lead time and actual inventory level. Uncertain data are represented by fuzzy numbers, and vaguely defined relations between them are modeled by fuzzy if-then rules. The proposed representation and inference mechanism are verified using a large numbers of examples. The results of three representative cases are summarized. Finally a comparison between the developed fuzzy knowledge-based and traditional, probabilistic approaches is discussed.
Resumo:
In this paper, we use reinforcement learning (RL) as a tool to study price dynamics in an electronic retail market consisting of two competing sellers, and price sensitive and lead time sensitive customers. Sellers, offering identical products, compete on price to satisfy stochastically arriving demands (customers), and follow standard inventory control and replenishment policies to manage their inventories. In such a generalized setting, RL techniques have not previously been applied. We consider two representative cases: 1) no information case, were none of the sellers has any information about customer queue levels, inventory levels, or prices at the competitors; and 2) partial information case, where every seller has information about the customer queue levels and inventory levels of the competitors. Sellers employ automated pricing agents, or pricebots, which use RL-based pricing algorithms to reset the prices at random intervals based on factors such as number of back orders, inventory levels, and replenishment lead times, with the objective of maximizing discounted cumulative profit. In the no information case, we show that a seller who uses Q-learning outperforms a seller who uses derivative following (DF). In the partial information case, we model the problem as a Markovian game and use actor-critic based RL to learn dynamic prices. We believe our approach to solving these problems is a new and promising way of setting dynamic prices in multiseller environments with stochastic demands, price sensitive customers, and inventory replenishments.
Resumo:
The objective of this study was to analyze the production process and supply control in order to identify possible gaps and develop a method for managing supplies. The relevance of this research is on the benefits that can obtain by identifying the problems of supply control. The research method used was the case study, which was grounded on tripod semi-structured interviews, on-site observation, and document analysis. This methodology was very suitable because it can be analyzed and cross checked. The possibility of implementation of the proposal obtained from the theoretical framework, that together with the complementary actions suggested here, offers the opportunity to make the process more productive and profitable. This work allowed one to observe the weaknesses in managing the supply chain and at what points to work should be improved. It allowed to use some scientific models in the company object of study in order to improve supply management. © 2011 IEEE.
Resumo:
This paper investigates the impact of trade barriers such as customs clearance, subjective trade obstacles (customs and trade regulations), and inventory of inputs on the internationalization of enterprises in Southeast Asia and Latin America, using the World Bank's enterprise surveys. Empirical results show a negative association between the internationalization of enterprises and subjective trade obstacles, while the impact of subjective trade obstacles is not significant on enterprises already internationalized. An international comparison between Southeast Asia and Latin America suggests that enterprises in Latin America face unfavorable conditions that discourage them from becoming more closely inserted into international production networks.