977 resultados para Intrusions (Geology)
Resumo:
Mode of access: Internet.
Resumo:
The Pacoima area is located on an isolated hill in the northeast section of the San Fernando, the northeast portion of the Pacoima Quadrangle, Los Angeles County, California. Within it are exposed more than 2300 feet of Tertiary rocks, which comprise three units of Middle Miocene (?) age, and approximately 950 feet of Jurassic (?) granite basement. The formations are characterized by their mode of occurrence, marine and terrestial origin, diverse lithology, and structural features.
The basement complex is composed of intrusive granite, small masses of granodiorite and a granodiorite gneiss with the development of schistosity in sections. During the long period of erosion of the metamorphics, the granitic rocks were exposed and may have provided clastic constituents for the overlying formations.
As a result of rapid sedimentation in a transitional environment, the Middle Miocene Twin Peaks formation was laid down unconformably on the granite. This formation is essentially a large thinning bed of gray to buff pebble and cobble conglomerate grading to coarse yellow sandstone. The contact of conglomerate and granite is characterized by its faulted and depositional nature.
Beds of extrusive andesite, basalt porphyry, compact vesicular amygdaloidal basalts, andesite breccia, interbedded feldspathic sands and clays of terrestial origin, and mudflow breccia comprise the Pacoima formation which overlies the Twin Peaks formation unconformably. A transgressing shallow sea accompanied settling of the region and initiated deposition of fine clastic sediments.
The marine Topanga (?) formation is composed of brown to gray coarse sandstone grading into interbedded buff sandstones and gray shales. Intrusions of rhyolitedacite and ash beds mark continued but sporatic volcanism during this period.
The area mapped represents an arch in the Tertiary sediments. Forces that produced the uplift of the granite structural high created stresses that were relieved by jointing and faulting. Vertical and horizontal movement along these faults has displaced beds, offset contacts and complicated their structure. Uplift and erosion have exposed the present sequence of beds which dip gently to the northeast. The isolated hill is believed to be in an early stage of maturity.
Spatial association of mud volcano and sandstone intrusions, Boyadag anticline, western Turkmenistan
Resumo:
Acknowledgements The Authors are indebted with Dr. Barbara Cerasetti, scientific coordinator of the Italian Archaeological Program in Turkmenistan (Dipartimento di Storia, Culture, Civiltà – Università di Bologna – Ministero per gli Affari Esteri – MAE), for the logistical help before and during the field activities in Turkmenistan. Our thanks to the administration of the National Institute of Deserts, Flora and Fauna, to the Turkmenistan Government and to Dr Aman Nigarov for the fruitful assistance in the field. We thank Prof. Marco Antonellini for the discussions on sandstone intrusions. The authors are indebted to the reviewers J. Peakall, P. Imbert, A. Hurst and an anonymous reviewer for the very helpful comments to the manuscript. Funding was provided by Prof. G. Gabbianelli for the field survey and by PRIN 2009 grants to Prof. Rossella Capozzi.
Resumo:
The Mount Isa Basin is a new concept used to describe the area of Palaeo- to Mesoproterozoic rocks south of the Murphy Inlier and inappropriately described presently as the Mount Isa Inlier. The new basin concept presented in this thesis allows for the characterisation of basin-wide structural deformation, correlation of mineralisation with particular lithostratigraphic and seismic stratigraphic packages, and the recognition of areas with petroleum exploration potential. The northern depositional margin of the Mount Isa Basin is the metamorphic, intrusive and volcanic complex here referred to as the Murphy Inlier (not the "Murphy Tectonic Ridge"). The eastern, southern and western boundaries of the basin are obscured by younger basins (Carpentaria, Eromanga and Georgina Basins). The Murphy Inlier rocks comprise the seismic basement to the Mount Isa Basin sequence. Evidence for the continuity of the Mount Isa Basin with the McArthur Basin to the northwest and the Willyama Block (Basin) at Broken Hill to the south is presented. These areas combined with several other areas of similar age are believed to have comprised the Carpentarian Superbasin (new term). The application of seismic exploration within Authority to Prospect (ATP) 423P at the northern margin of the basin was critical to the recognition and definition of the Mount Isa Basin. The Mount Isa Basin is structurally analogous to the Palaeozoic Arkoma Basin of Illinois and Arkansas in southern USA but, as with all basins it contains unique characteristics, a function of its individual development history. The Mount Isa Basin evolved in a manner similar to many well described, Phanerozoic plate tectonic driven basins. A full Wilson Cycle is recognised and a plate tectonic model proposed. The northern Mount Isa Basin is defined as the Proterozoic basin area northwest of the Mount Gordon Fault. Deposition in the northern Mount Isa Basin began with a rift sequence of volcaniclastic sediments followed by a passive margin drift phase comprising mostly carbonate rocks. Following the rift and drift phases, major north-south compression produced east-west thrusting in the south of the basin inverting the older sequences. This compression produced an asymmetric epi- or intra-cratonic clastic dominated peripheral foreland basin provenanced in the south and thinning markedly to a stable platform area (the Murphy Inlier) in the north. The fmal major deformation comprised east-west compression producing north-south aligned faults that are particularly prominent at Mount Isa. Potential field studies of the northern Mount Isa Basin, principally using magnetic data (and to a lesser extent gravity data, satellite images and aerial photographs) exhibit remarkable correlation with the reflection seismic data. The potential field data contributed significantly to the unravelling of the northern Mount Isa Basin architecture and deformation. Structurally, the Mount Isa Basin consists of three distinct regions. From the north to the south they are the Bowthorn Block, the Riversleigh Fold Zone and the Cloncurry Orogen (new names). The Bowthom Block, which is located between the Elizabeth Creek Thrust Zone and the Murphy Inlier, consists of an asymmetric wedge of volcanic, carbonate and clastic rocks. It ranges from over 10 000 m stratigraphic thickness in the south to less than 2000 min the north. The Bowthorn Block is relatively undeformed: however, it contains a series of reverse faults trending east-west that are interpreted from seismic data to be down-to-the-north normal faults that have been reactivated as thrusts. The Riversleigh Fold Zone is a folded and faulted region south of the Bowthorn Block, comprising much of the area formerly referred to as the Lawn Hill Platform. The Cloncurry Orogen consists of the area and sequences equivalent to the former Mount Isa Orogen. The name Cloncurry Orogen clearly distinguishes this area from the wider concept of the Mount Isa Basin. The South Nicholson Group and its probable correlatives, the Pilpah Sandstone and Quamby Conglomerate, comprise a later phase of now largely eroded deposits within the Mount Isa Basin. The name South Nicholson Basin is now outmoded as this terminology only applied to the South Nicholson Group unlike the original broader definition in Brown et al. (1968). Cored slimhole stratigraphic and mineral wells drilled by Amoco, Esso, Elf Aquitaine and Carpentaria Exploration prior to 1986, penetrated much of the stratigraphy and intersected both minor oil and gas shows plus excellent potential source rocks. The raw data were reinterpreted and augmented with seismic stratigraphy and source rock data from resampled mineral and petroleum stratigraphic exploration wells for this study. Since 1986, Comalco Aluminium Limited, as operator of a joint venture with Monument Resources Australia Limited and Bridge Oil Limited, recorded approximately 1000 km of reflection seismic data within the basin and drilled one conventional stratigraphic petroleum well, Beamesbrook-1. This work was the first reflection seismic and first conventional petroleum test of the northern Mount Isa Basin. When incorporated into the newly developed foreland basin and maturity models, a grass roots petroleum exploration play was recognised and this led to the present thesis. The Mount Isa Basin was seen to contain excellent source rocks coupled with potential reservoirs and all of the other essential aspects of a conventional petroleum exploration play. This play, although high risk, was commensurate with the enormous and totally untested petroleum potential of the basin. The basin was assessed for hydrocarbons in 1992 with three conventional exploration wells, Desert Creek-1, Argyle Creek-1 and Egilabria-1. These wells also tested and confrrmed the proposed basin model. No commercially viable oil or gas was encountered although evidence of its former existence was found. In addition to the petroleum exploration, indeed as a consequence of it, the association of the extensive base metal and other mineralisation in the Mount Isa Basin with hydrocarbons could not be overlooked. A comprehensive analysis of the available data suggests a link between the migration and possible generation or destruction of hydrocarbons and metal bearing fluids. Consequently, base metal exploration based on hydrocarbon exploration concepts is probably. the most effective technique in such basins. The metal-hydrocarbon-sedimentary basin-plate tectonic association (analogous to Phanerozoic models) is a compelling outcome of this work on the Palaeo- to Mesoproterozoic Mount lsa Basin. Petroleum within the Bowthom Block was apparently destroyed by hot brines that produced many ore deposits elsewhere in the basin.
Resumo:
One way to integrate indigenous perspectives in junior science is through links between indigenous stories of the local area and science concepts. Using local indigenous stories about landforms, a teacher of year 8 students designed a unit on geology that catered for the diverse student population in his class. This paper reports on the inquiry-based approach structured around the requirements of the Australian Curriculum highlighting the learning and engagement of students during the unit.