168 resultados para Introgression
Resumo:
Mussel populations on the Irish Atlantic coast comprise an interbreeding mixture of the blue mussel, Mytilus edulis (L.) and the Mediterranean mussel, Mytilus galloprovincialis (Lmk.). The occurrence of hybrid genotypes varies between sites but can be as high 80%. This study compares the reproductive cycle of M. edulis, M. galloprovincialis and their hybrids to determine if the extensive hybridisation observed at Irish Atlantic coast sites is linked to spawning synchrony between the two taxa. Mussels (40-45 mm size class) were collected monthly from a sheltered shore in Galway Bay from January to December 2005. Two major spawning events (March- June and September-October) were observed and gametogenesis took place throughout the year. The spawning cycles of the three taxa were largely overlapping. Small differences were observed in the timing of peak spawning which occurred in March and October in M. galloprovincialis and in May-June and September in M.edulis. Spawning of hybrid individuals was intermediate between the parental genotypes. Fecundity was slightly higher in M. galloprovincialis females compared to the other taxa (up to 30% difference, p<0.05). This apparent advantage is not shared by the sexes and is likely being offset by high numbers of hybrid genotypes releasing gametes during peak spawning of M. galloprovincialis. There was no evidence for increased mortality in hybrid males; sex ratios did not deviate from the 1:1 ratio. The results show that in this region of the hybrid zone the timing of reproduction does not present a barrier to gene flow between M. edulis and M. galloprovincialis. Nonetheless, small differences in the timing of peak spawning may increase the likelihood of conspecific fertilisation at certain times of the year. Hybrids outnumber the parental genotypes, undergo complete gametogenesis and show no evidence of depressed fitness (i.e. hybrids are reproductively competent suggesting a high degree of introgression.
Resumo:
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.
Resumo:
Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative.
Resumo:
The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long-standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well-studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best-supported scenario was a long period of allopatric isolation during the first three-quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.
Resumo:
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Resumo:
Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.
Resumo:
The common shrew (Sorex araneus) is subdivided into numerous chromosome races. The Valais and Cordon chromosome races meet and hybridize at a mountain river in Les Houches (French Alps). Significant genetic structuring was recently reported among populations found on the Valais side of this hybrid zone. In this paper, a phylogenetic analysis and partial Mantel tests are used to investigate the patterns and causes of this structuring. A total of 185 shrews were trapped at 12 localities. All individuals were typed for nine microsatellite loci. Although several mountain rivers are found in the study area, riverine barriers do not have a significant influence on gene flow. Partial Mantel tests show that our result is caused by the influence of the hybrid zone with the Cordon race. The geographical patterns of this structuring are discussed in the context of the contact zone, which appears to extend up to a group of two rivers. The glacier they originate from is known to have cut the Arve valley as recently as 1818. The recent history of this glacier, its moraine and possibly rivers, may therefore be linked to the history of this hybrid zone.
Resumo:
BACKGROUND: The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure RESULTS: The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. CONCLUSIONS: The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa.
Resumo:
The objective of this work was to evaluate the yield performance of two generations (BC2F2 and BC2F9) of introgression lines developed from the interspecific cross between Oryza sativa and O. glumaepatula, and to identify the SSR markers associated to yield. The wild accession RS‑16 (O. glumaepatula) was used as donor parent in the backcross with the high yielding cultivar Cica‑8 (O. sativa). A set of 114 BC2F1 introgression lines was genotyped with 141 polymorphic SSR loci distributed across the whole rice genome. Molecular analysis showed that in average 22% of the O. glumaepatula genome was introgressed into BC2F1 generation. Nine BC2F9 introgression lines had a significantly higher yield than the genitor Cica‑8, thus showing a positive genome interaction among cultivated rice and the wild O. glumaepatula. Seven QTL were identified in the overall BC2F2, with one marker interval (4879‑EST20) of great effect on yield. The alleles with positive effect on yield came from the cultivated parent Cica‑8.
Resumo:
Interbreeding of two species in the wild implies introgression of alleles from one species into the other only when admixed individuals survive and successfully backcross with the parental species. Consequently, estimating the proportion of first generation hybrids in a population may not inform about the evolutionary impact of hybridization. Samples obtained over a long time span may offer a more accurate view of the spreading of introgressed alleles in a species" gene pool. Common quail (Coturnix coturnix) populations in Europe have been restocked extensively with farm quails of hybrid origin (crosses with Japanese quails, C. japonica). We genetically monitored a common quail population over 15 years to investigate whether genetic introgression is occurring and used simulations to investigate our power to detect it. Our results revealed that some introgression has occurred, but we did not observe a significant increase over time in the proportion of admixed individuals. However, simulations showed that the degree of admixture may be larger than anticipated due to the limited power of analyses over a short time span, and that observed data was compatible with a low rate of introgression, probably resulting from reduced fitness of admixed individuals. Simulations predicted this could result in extensive admixture in the near future.
Resumo:
Hybridization between B. involutum and B. weddellii (Orchidaceae) has been first observed in the Serra do Cipó, Minas Gerais State, Brazil, the hybrid being described as B. ×cipoense Borba & Semir. In this study, allozime electrophoresis was used to test the hypothesis of occurrence of hybridization between these two species, as suggested by morphological characters, in the Chapada Diamantina, Bahia State, Brazil. The lack of a diagnostic locus does not allow definite confirmation of the natural hybridization, although this hypotheses is reinforced by the absence of exclusive alleles in the putative hybrid individuals. The existence of several different genotypes points out to either population derived from multiple hybridization events or the hybrids produced offspring. Homozigosity in some morphologically intermediate individuals of alelles which are exclusive to B. involutum and high genetic similarity between them reinforce the hypotheses of introgression in B. involutum, but not in B. weddellii. Genetic variability observed in B. weddellii (He = 0.21) and B. involutum (He = 0.35) is high. Bulbophyllum weddellii and B. involutum presented very high genetic similarity values (0.94). These species, although vegetatively similar, have been placed in different sections based on floral morphology. The results suggest that these species may be more related than previously supposed.
Resumo:
The hypothesis of gene flow between species with large differences in chromosome numbers has rarely been tested in the wild, mainly because species of different ploidy are commonly assumed to be reproductively isolated from each other because of instantaneous and strong postzygotic barriers. In this study, a broad-scale survey of molecular variation was carried out between two orchid species with different ploidy levels: Epidendrum fulgens (2n = 2x = 24 chromosomes) and Epidendrum puniceoluteum (2n = 4x = 52 chromosomes). To test the strength of their reproductive barriers, we investigated the distribution of genetic variation in sympatric and allopatric populations of these two species and conducted crossing experiments. Nuclear and plastid microsatellite loci were used to genotype 463 individuals from eight populations across the geographical range of both species along the Brazilian coastal plain. All six sympatric populations analysed presented hybrid zones, indicating that hybridization between E. fulgens and E. puniceoluteum is a common phenomenon. Bayesian assignment analysis detected the presence of F(1) and F(2) individuals and also signs of introgression, demonstrating a high potential for interspecific gene flow. Introgression occurs preferentially from E. fulgens to E. puniceoluteum. Pure parental individuals of both species display strong genotype-habitat associations, indicating that environment-dependent selection could be acting in all hybrid zones. This study suggests that hybridization and introgression are evolutionary processes playing a role in the diversification of Epidendrum and indicates the importance of investigations of hybrid zones in understanding reproductive barriers and speciation processes in Neotropical orchid species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)