987 resultados para Intravascular ultrasound imaging
Resumo:
OBJECTIVES: This study aimed to evaluate the degradation rate and long-term vascular responses to the absorbable metal stent (AMS). BACKGROUND: The AMS demonstrated feasibility and safety at 4 months in human coronary arteries. METHODS: The PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting) was a prospective, multicenter clinical trial of 63 patients with coronary artery disease who underwent AMS implantation. Angiography and intravascular ultrasound (IVUS) were conducted immediately after AMS deployment and at 4 months. Eight patients who did not require repeat revascularization at 4 months underwent late angiographic and IVUS follow-up from 12 to 28 months. RESULTS: The AMS was well-expanded upon deployment without immediate recoil. The major contributors for restenosis as detected by IVUS at 4 months were: decrease of external elastic membrane volume (42%), extra-stent neointima (13%), and intra-stent neointima (45%). From 4 months to late follow-up, paired IVUS analysis demonstrated complete stent degradation with durability of the 4-month IVUS indexes. The neointima was reduced by 3.6 +/- 5.2 mm(3), with an increase in the stent cross sectional area of 0.5 +/- 1.0 mm(2) (p = NS). The median in-stent minimal lumen diameter was increased from 1.87 to 2.17 mm at long-term follow-up. The median angiographic late loss was reduced from 0.62 to 0.40 mm by quantitative coronary angiography from 4 months to late follow-up. CONCLUSIONS: Intravascular ultrasound imaging supports the safety profile of AMS with degradation at 4 months and maintains durability of the results without any early or late adverse findings. Slower degradation is warranted to provide sufficient radial force to improve long-term patency rates of the AMS.
Resumo:
Patients with stenosed biologic pulmonary conduits require redo cardiac surgery to prevent severe right ventricular dysfunction. Following the latest trends, the trans-catheter pulmonary stent-valve implantation represents a new fascinating alternative carrying a lower operative risk, compared with the standard open-heart re-intervention. Traditionally, the pulmonary stent valve is positioned off pump, under fluoroscopic control, and requires angiographies. However, alternative tools not requiring contrast injections for the intra-operative cardiac imaging have to be also considered strongly. The usefulness of intravascular ultrasound for the positioning of aortic endoprosthesis has already been proven in previous reports and, following the same principle, we have started to routinely implant balloon-expandable stent valves (Edwards Sapien? THV) in stenosed pulmonary valve conduits using intravascular ultrasound for the stent-valve positioning without angiography. We describe the intra-operative intravascular imaging technique with technical details.
Resumo:
Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Aims: We aimed to evaluate if the co-localisation of calcium and necrosis in intravascular ultrasound virtual histology (IVUS-VH) is due to artefact, and whether this effect can be mathematically estimated. Methods and results: We hypothesised that, in case calcium induces an artefactual coding of necrosis, any addition in calcium content would generate an artificial increment in the necrotic tissue. Stent struts were used to simulate the ""added calcium"". The change in the amount and in the spatial localisation of necrotic tissue was evaluated before and after stenting (n=17 coronary lesions) by means of a especially developed imaging software. The area of ""calcium"" increased from a median of 0.04 mm(2) at baseline to 0.76 mm(2) after stenting (p<0.01). In parallel the median necrotic content increased from 0.19 mm(2) to 0.59 mm(2) (p<0.01). The ""added"" calcium strongly predicted a proportional increase in necrosis-coded tissue in the areas surrounding the calcium-like spots (model R(2)=0.70; p<0.001). Conclusions: Artificial addition of calcium-like elements to the atherosclerotic plaque led to an increase in necrotic tissue in virtual histology that is probably artefactual. The overestimation of necrotic tissue by calcium strictly followed a linear pattern, indicating that it may be amenable to mathematical correction.
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 912 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. PassingBablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 9-12 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. Passing-Bablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
Background The evaluation of the hepatic parenchyma in patients with chronic liver disease is important to assess the extension, localization and relationship with adjacent anatomical structures of possible lesions. This is usually performed with conventional abdominal ultrasound, CT-scan or magnetic resonance imaging. In this context, the feasibility and the safety of intravascular ultrasound in the liver have not been assessed yet. Methods We tested the safety and performance of an intracardiac echography (ICE) catheter applied by a transjugular approach into the hepatic veins in patients with chronic liver disease undergoing hepatic hemodynamic measurements. Results Five patients were enrolled in this pilot study. The insertion of the ICE catheter was possible into the right and middle, but not into the left hepatic vein. The position of the ICE was followed using fluoroscopy and external conventional ultrasound. Accurate imaging of focal hepatic parenchymal lesions, Doppler ultrasound of surrounding blood vessels and assessment of liver surface and ascites were achieved without complications. Conclusions This study demonstrated that a diagnostic approach using an ICE device inserted in the hepatic veins is feasible, safe and well tolerated. However, it remains for the moment only an experimental investigative tool. Whether ICE adds further information regarding parenchymal lesions and associated vascular alterations as compared to other techniques, needs additional investigation.
Resumo:
To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the ABSORB study, changes in the appearance of the ABSORB scaffold were monitored over time using various intracoronary imaging modalities. The scaffold struts exhibited a progressive change in their black core area by OCT, in their ultrasound derived grey level intensity quantified by echogenicity, and in their backscattering ultrasound signal, identified as "pseudo dense-calcium" (DC) by VH.
Resumo:
The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort.
Resumo:
Real-time ultrasound imaging provides an unrivalled opportunity to observe muscle morphology and contraction. This has obvious potential for clinical practice and the tool is beginning to be adopted into physical therapy. The implementation of ultrasound imaging has become particularly widespread for assessment of size and activation of deep trunk muscles, such as the transversus abdominis and lumbar multifidus, and for assessment of the pelvic floor muscles. The obvious benefit for these areas is that ultrasound permits observation of muscles that are difficult to assess through noninvasive means. This realization of the clinical potential of ultrasound imaging has been paralleled by an explosion of clinical and physiological research. However, despite the enthusiasm for utilization of ultrasound imaging, a question that is critical to address is whether ultrasound can actually improve rehabilitation.
Resumo:
A prospective clinical study was carried out to evaluate the influence of posture on perineal ultrasound imaging parameters. One hundred and thirty-two consecutive women presenting with symptoms of lower urinary tract dysfunction were examined by multichannel videourodynamics and perineal ultrasound, both supine and standing. Ultrasound included color Doppler imaging when available, i.e. in a subgroup of 99 patients. The position of the bladder neck at rest was higher in the supine position (P
Resumo:
In a prospective study 105 patients with symptoms of stress incontinence underwent video-urodynamic testing, including resting urethral pressure profilometry and translabial ultrasound. The urethral pressure profile (UPP) included maximum urethral closure pressure (MUCP), functional length (FL) and area under the curve (AUC). Ultrasound parameters included urethral thickness, urethral rotation and bladder neck descent, as well as funneling/opening of the internal urethral meatus on Valsalva maneuver. Levator contraction strength was assessed measuring the cranioventral displacement of the internal meatus. Negative correlations between UPP data and age, parity and previous surgery were observed which were consistent with literature data. There was a positive correlation :between the urethral AP diameter on ultrasound and the MUCP, which agrees with reports showing reduced sphincter thickness or volume in stress-incontinent women. Hypermobility on ultrasound did not correlate with UPP data. However, a lower MUCP correlated with extensive opening of the bladder neck. Finally, there was a trend towards poorer pelvic floor function with lower MUCP measurements.