971 resultados para Intraepithelial Neoplasia
Resumo:
Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.
Resumo:
Growth and metastatic spread of invasive carcinoma depends on angiogenesis, the formation of new blood vessels. Platelet-derived endothelial cell growth factor (PD-ECGF) is an angiogenic growth factor for a number of solid tumors, including lung, bladder, colorectal, and renal cell cancer. Cervical intraepithelial neoplasia (CIN) is the precursor to squamous cell cervical carcinoma (SCC). Mean vessel density (MVD) increases from normal cervical tissue, through low- and high-grade CIN to SCC. We evaluated PD-ECGF immunoreactivity and correlated its expression with MVD in normal, premalignant, and malignant cervical tissue. PD-ECGF expression was assessed visually within the epithelial tissues and scored on the extent and intensity of staining. MVD was calculated by counting the number of vessels positive for von Willebrand factor per unit area subtending normal or CIN epithelium or within tumor hotspots for SCC. Cytoplasmic and/or nuclear PD-ECGF immunoreactivity was seen in normal epithelium. PD-ECGF expression significantly increased with histologic grade from normal, through low- and high-grade CIN, to SCC (P < .02). A progressive significant increase in the microvessel density was also seen, ranging from a mean of 28 vessels for normal tissue to 57 for SCC (P < .0005). No correlation was found between PD-ECGF expression and MVD (P = .45). We conclude that PD-ECGF expression and MVD increase as the cervix transforms from a normal to a malignant phenotype. PD-ECGF is thymidine phosphorylase, a key enzyme in the activation of fluoropyrimidines, including 5-fluorouracil. Evaluation of PD-ECGF thymidine phosphorylase expression may be important in designing future chemotherapeutic trials in cervical cancer. Copyright (C) 2000 by W.B. Saunders Company.
Resumo:
Cervical cancer develops through precursor lesions, i.e. cervical intraepithelialneoplasms (CIN). These can be detected and treated before progression to invasive cancer. The major risk factor for developing cervical cancer or CIN is persistent or recurrent infection with high-risk human papilloma virus (hrHPV). Other associated risk factors include low socioeconomic status, smoking, sexually transmitted infections, and high number of sexual partners, and these risk factors can predispose to some other cancers, excess mortality, and reproductive health complications as well. The aim was to study long-term cancer incidence, mortality, and reproductive health outcomes among women treated for CIN. Based on the results, we could evaluate the efficacy and safety of CIN treatment practices and estimate the role of the risk factors of CIN patients for cancer incidence, mortality, and reproductive health. We collected a cohort of 7 599 women treated for CIN at Helsinki University Central Hospital from 1974 to 2001. Information about their cancer incidence, cause of death, birth of children and other reproductive endpoints, and socio-economic status were gathered through registerlinkages to the Finnish Cancer Registry, Finnish Population Registry, and Statistics Finland. Depending on the endpoints in question, the women treated were compared to the general population, to themselves, or to an age- and municipality-matched reference cohort. Cervical cancer incidence was increased after treatment of CIN for at least 20 years, regardless of the grade of histology at treatment. Compared to all of the colposcopically guided methods, cold knife conization (CKC) was the least effective method of treatment in terms of later CIN 3 or cervical cancer incidence. In addition to cervical cancer, incidence of other HPV-related anogenital cancers was increased among those treated, as was the incidence of lung cancer and other smoking-related cancers. Mortality from cervical cancer among the women treated was not statistically significantly elevated, and after adjustment for socio-economic status, the hazard ratio (HR) was 1.0. In fact, the excess mortality among those treated was mainly due to increased mortality from other cancers, especially from lung cancer. In terms of post-treatment fertility, the CIN treatments seem to be safe: The women had more deliveries, and their incidence of pregnancy was similar before and after treatment. Incidence of extra-uterine pregnancies and induced abortions was elevated among the treated both before and after treatment. Thus this elevation did not occur because they were treated rather to a great extent was due to the other known risk factors these women had in excess, i.e. sexually transmitted infections. The purpose of any cancer preventive activity is to reduce cancer incidence and mortality. In Finland, cervical cancer is a rare disease and death from it even rarer, mostly due to the effective screening program. Despite this, the women treated are at increased risk for cancer; not just for cervical cancer. They must be followed up carefully and for a long period of time; general health education, especially cessation of smoking, is crucial in the management process, as well as interventions towards proper use of birth control such as condoms.
Resumo:
Upregulated gene 19 (U19)/ELL-associated factor 2 (Eaf2) is a potential human tumor suppressor that exhibits frequent allelic loss and downregulation in high-grade prostate cancer. U19/Eaf2, along with its homolog Eaf1, has been reported to regulate transcriptional elongation via interaction with the eleven-nineteen lysine-rich leukemia (ELL) family of proteins. To further explore the tumor-suppressive effects of U19/Eaf2, we constructed and characterized a murine U19/Eaf2-knockout model. Homozygous or heterozygous deletion of U19/Eaf2 resulted in high rates of lung adenocarcinoma, B-cell lymphoma, hepato cellular carcinoma and prostate intraepithelial neoplasia. Within the mouse prostate, U19/Eaf2 defficiency enhanced cell proliferation and increased epithelial cell size. The knockout mice also exhibited cardiac cell hypertrophy. These data indicate a role for U19/Eaf2 in growth suppression and cell size control as well as argue for U19/Eaf2 as a novel tumor suppressor in multiple mouse tissues. The U19/Eaf2 knockout mouse also provides a unique animal model for three important cancers: lung adenocarcinoma, B-cell lymphoma and hepatocellular carcinoma.
Resumo:
The histological grading of cervical intraepithelial neoplasia (CIN) remains subjective, resulting in inter- and intra-observer variation and poor reproducibility in the grading of cervical lesions. This study has attempted to develop an objective grading system using automated machine vision. The architectural features of cervical squamous epithelium are quantitatively analysed using a combination of computerized digital image processing and Delaunay triangulation analysis; 230 images digitally captured from cases previously classified by a gynaecological pathologist included normal cervical squamous epithelium (n = 30), koilocytosis (n = 46), CIN 1 (n = 52), CIN 2 (n = 56), and CIN 3 (n=46). Intra- and inter-observer variation had kappa values of 0.502 and 0.415, respectively. A machine vision system was developed in KS400 macro programming language to segment and mark the centres of all nuclei within the epithelium. By object-oriented analysis of image components, the positional information of nuclei was used to construct a Delaunay triangulation mesh. Each mesh was analysed to compute triangle dimensions including the mean triangle area, the mean triangle edge length, and the number of triangles per unit area, giving an individual quantitative profile of measurements for each case. Discriminant analysis of the geometric data revealed the significant discriminatory variables from which a classification score was derived. The scoring system distinguished between normal and CIN 3 in 98.7% of cases and between koilocytosis and CIN 1 in 76.5% of cases, but only 62.3% of the CIN cases were classified into the correct group, with the CIN 2 group showing the highest rate of misclassification. Graphical plots of triangulation data demonstrated the continuum of morphological change from normal squamous epithelium to the highest grade of CIN, with overlapping of the groups originally defined by the pathologists. This study shows that automated location of nuclei in cervical biopsies using computerized image analysis is possible. Analysis of positional information enables quantitative evaluation of architectural features in CIN using Delaunay triangulation meshes, which is effective in the objective classification of CIN. This demonstrates the future potential of automated machine vision systems in diagnostic histopathology. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
Background: The work in this study appraised photodynamic treatment (PDT) as a treatment method for vulval intraepithelial neoplasia (VIN) using a novel bioadhesive patch to deliver aminolevulinic acid. An analysis of changes in expression of apoptotic and cell cycle proteins (p53, p21, Mdm2, Blc-2, Bax, Ki-67) in response to PDT was evaluated. Methods: PDT was performed using non-laser light, either as a one or two-cycle treatment, with clinical and pathological assessment following after 6 weeks. Twenty-three patients with 25 VIN lesions underwent 49 cycles of PDT Patches were designed to conform to uneven vulval skin and contained 38 mg cm(-2) aminolevulinic acid. Assessment was carried out at 6 weeks post-treatment. Patient-based treatment assessment, along with clinical and pathological changes, were monitored. Immunohistochemical staining was used to elucidate a possible biomolecular basis for induced cellular changes. Results: Most patients (52%) reported a symptomatic response, with normal pathology restored in 38% of lesions. The patch was easy to apply and remove, causing minimal discomfort. Fluorescence inspection confirmed protoporphyrin accumulation. Pain during implementation of PDT was problematic, necessitating some form of local analgesia. Changes in expression of cell cycle and apoptotic-related proteins suggested involvement of apoptotic pathways. Down regulation of p21 and inverse changes in Bcl-2 and Bax were key findings. Conclusion: Treatment of VIN lesions using a novel bioadhesive patch induced changes in cell cycle and apoptotic proteins in response to PDT with possible utilisation of apoptotic pathways. The efficacy of PDT in treating VIN could be improved by a better understanding of these apoptotic mechanisms, the influence of factors, such as HPV status, and of the need for effective pain management.
Resumo:
This paper introduces an automated computer- assisted system for the diagnosis of cervical intraepithelial neoplasia (CIN) using ultra-large cervical histological digital slides. The system contains two parts: the segmentation of squamous epithelium and the diagnosis of CIN. For the segmentation, to reduce processing time, a multiresolution method is developed. The squamous epithelium layer is first segmented at a low (2X) resolution. The boundaries are further fine tuned at a higher (20X) resolution. The block-based segmentation method uses robust texture feature vectors in combination with support vector machines (SVMs) to perform classification. Medical rules are finally applied. In testing, segmentation using 31 digital slides achieves 94.25% accuracy. For the diagnosis of CIN, changes in nuclei structure and morphology along lines perpendicular to the main axis of the squamous epithelium are quantified and classified. Using multi-category SVM, perpendicular lines are classified into Normal, CIN I, CIN II, and CIN III. The robustness of the system in term of regional diagnosis is measured against pathologists' diagnoses and inter-observer variability between two pathologists is considered. Initial results suggest that the system has potential as a tool both to assist in pathologists' diagnoses, and in training.