944 resultados para Interval analysis
Resumo:
Els models matemàtics quantitatius són simplificacions de la realitat i per tant el comportament obtingut per simulació d'aquests models difereix dels reals. L'ús de models quantitatius complexes no és una solució perquè en la majoria dels casos hi ha alguna incertesa en el sistema real que no pot ser representada amb aquests models. Una forma de representar aquesta incertesa és mitjançant models qualitatius o semiqualitatius. Un model d'aquest tipus de fet representa un conjunt de models. La simulació del comportament de models quantitatius genera una trajectòria en el temps per a cada variable de sortida. Aquest no pot ser el resultat de la simulació d'un conjunt de models. Una forma de representar el comportament en aquest cas és mitjançant envolupants. L'envolupant exacta és complete, és a dir, inclou tots els possibles comportaments del model, i correcta, és a dir, tots els punts dins de l'envolupant pertanyen a la sortida de, com a mínim, una instància del model. La generació d'una envolupant així normalment és una tasca molt dura que es pot abordar, per exemple, mitjançant algorismes d'optimització global o comprovació de consistència. Per aquesta raó, en molts casos s'obtenen aproximacions a l'envolupant exacta. Una aproximació completa però no correcta a l'envolupant exacta és una envolupant sobredimensionada, mentre que una envolupant correcta però no completa és subdimensionada. Aquestes propietats s'han estudiat per diferents simuladors per a sistemes incerts.
Resumo:
In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Las superfícies implícitas son útiles en muchas áreasde los gráficos por ordenador. Una de sus principales ventajas es que pueden ser fácilmente usadas como primitivas para modelado. Aun asi, no son muy usadas porque su visualización toma bastante tiempo. Cuando se necesita una visualización precisa, la mejor opción es usar trazado de rayos. Sin embargo, pequeñas partes de las superficies desaparecen durante la visualización. Esto ocurre por la truncación que se presenta en la representación en punto flotante de los ordenadores; algunos bits se puerden durante las operaciones matemáticas en los algoritmos de intersección. En este tesis se presentan algoritmos para solucionar esos problemas. La investigación se basa en el uso del Análisis Intervalar Modal el cual incluye herramientas para resolver problemas con incertidumbe cuantificada. En esta tesis se proporcionan los fundamentos matemáticos necesarios para el desarrollo de estos algoritmos.
Resumo:
Constrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
OBJETIVO: A relação entre pobreza e violência tem sido questionada por alguns autores. Nesse sentido, foi realizado estudo com o objetivo de analisar os diferenciais intra-urbanos de mortalidade por homicídio segundo as condições de vida. MÉTODOS: Estudo de agregados referente aos anos de 1991 e 1994, considerando as 75 zonas de informação de Salvador, BA, e a classificação de sua população em quatro estratos de condições de vida, a partir das variáveis renda e escolaridade. Para cada estrato, foram calculados a taxa de mortalidade por homicídios e o risco relativo de morte para o estrato de piores condições de vida em relação aos demais. Os dados foram obtidos de declarações de óbito, dos registros do Instituto Médico Legal e do Censo Demográfico de 1991. Foram calculados os intervalos de confiança a 95%, mediante o aplicativo Confidence Interval Analysis. RESULTADOS: As taxas de mortalidade por homicídio mais elevadas foram registradas nas áreas mais pobres da cidade. O risco relativo de morte por essa causa entre o estrato de piores e o de melhores condições de vida variou entre 2,9 e 5,1, sendo essa relação estatisticamente significante em nível de 5%. CONCLUSÃO: Os achados são sugestivos das possíveis relações entre homicídios e desigualdades sociais, o que levou a discussões sobre a relevância de iniciativas organizadas para a redução da violência.
Resumo:
Optimization is a very important field for getting the best possible value for the optimization function. Continuous optimization is optimization over real intervals. There are many global and local search techniques. Global search techniques try to get the global optima of the optimization problem. However, local search techniques are used more since they try to find a local minimal solution within an area of the search space. In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as relations between variables, and the computations are supported by interval analysis. The continuous constraint programming framework provides branch-and-prune algorithms for covering sets of solutions for the constraints with sets of interval boxes which are the Cartesian product of intervals. These algorithms begin with an initial crude cover of the feasible space (the Cartesian product of the initial variable domains) which is recursively refined by interleaving pruning and branching steps until a stopping criterion is satisfied. In this work, we try to find a convenient way to use the advantages in CCSP branchand- prune with local search of global optimization applied locally over each pruned branch of the CCSP. We apply local search techniques of continuous optimization over the pruned boxes outputted by the CCSP techniques. We mainly use steepest descent technique with different characteristics such as penalty calculation and step length. We implement two main different local search algorithms. We use “Procure”, which is a constraint reasoning and global optimization framework, to implement our techniques, then we produce and introduce our results over a set of benchmarks.
Resumo:
This work studies the combination of safe and probabilistic reasoning through the hybridization of Monte Carlo integration techniques with continuous constraint programming. In continuous constraint programming there are variables ranging over continuous domains (represented as intervals) together with constraints over them (relations between variables) and the goal is to find values for those variables that satisfy all the constraints (consistent scenarios). Constraint programming “branch-and-prune” algorithms produce safe enclosures of all consistent scenarios. Special proposed algorithms for probabilistic constraint reasoning compute the probability of sets of consistent scenarios which imply the calculation of an integral over these sets (quadrature). In this work we propose to extend the “branch-and-prune” algorithms with Monte Carlo integration techniques to compute such probabilities. This approach can be useful in robotics for localization problems. Traditional approaches are based on probabilistic techniques that search the most likely scenario, which may not satisfy the model constraints. We show how to apply our approach in order to cope with this problem and provide functionality in real time.
Resumo:
This paper describes a new reliable method, based on modal interval analysis (MIA) and set inversion (SI) techniques, for the characterization of solution sets defined by quantified constraints satisfaction problems (QCSP) over continuous domains. The presented methodology, called quantified set inversion (QSI), can be used over a wide range of engineering problems involving uncertain nonlinear models. Finally, an application on parameter identification is presented
Resumo:
In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented