1000 resultados para Intersonic Shear Cracks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O comportamento estrutural de uma viga T permite avaliar diferentes contribuições de resistência ao cisalhamento entre partes distintas de uma mesma seção transversal, permitindo estabelecer diretrizes para a disposição de armadura nessas regiões. Para quantificar as participações de mesas colaborantes e almas desse tipo de seção na resistência característica ao cisalhamento, foram investigadas experimentalmente 10 vigas de concreto armado constituídas de seções T, visando avaliar as recomendações da norma NBR, ACI e EC2 no que se refere ao desempenho de vigas T ao cisalhamento. Uma das vigas foi confeccionada para testemunho e as demais foram idealizadas com variação nas dimensões da mesa, para aumentar assim a área de concreto colaborante da seção. A armadura de flexão foi mantida constante em todos os casos e a armadura de cisalhamento foi suprimida, para que todas as vigas tivessem rupturas por cisalhamento antecipadas em relação à ruína por flexão. O concreto utilizado teve resistência à compressão de 47 MPa. Percebe-se claramente a influência da mesa colaborante na resistência última ao cisalhamento dos elementos estruturais ensaiados. O aumento da carga última foi significativo nas vigas com abas, passando do dobro da carga da viga de referência, e mais ainda, nas vigas com altura (hf) de 80 mm, nas quais a contribuição da mesa foi capaz de modificar o modo de ruptura das peças cujas armaduras de flexão entraram em processo de escoamento e o incremento de rigidez dado aos elementos em virtude do aumento da área de concreto (abas) da seção transversal foi em torno de 25%. A partir destes e outros resultados foi possível amplificar a resistência ao cisalhamento das longarinas da ponte sobre o rio Sororó da ferrovia Carajás em 1,93 vezes a resistência teórica para viga retangular no caso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El uso de materiales compuestos para el refuerzo, reparación y rehabilitación de estructuras de hormigón se ha convertido en una técnica muy utilizada en la última década. Con independencia de la técnica del refuerzo, uno de los principales condicionantes del diseño es el fallo de la adherencia entre el hormigón y el material compuesto, atribuida generalmente a las tensiones en la interfaz de estos materiales. Las propiedades mecánicas del hormigón y de los materiales compuestos son muy distintas. Los materiales compuestos comúnmente utilizados en ingeniería civil poseen alta resistencia a tracción y tienen un comportamiento elástico y lineal hasta la rotura, lo cual, en contraste con el ampliamente conocido comportamiento del hormigón, genera una clara incompatibilidad para soportar esfuerzos de forma conjunta. Esta incompatibilidad conduce a fallos relacionados con el despegue del material compuesto del sustrato de hormigón. En vigas de hormigón reforzadas a flexión o a cortante, el despegue del material compuesto es un fenómeno que frecuentemente condiciona la capacidad portante del elemento. Existen dos zonas potenciales de iniciación del despegue: los extremos y la zona entre fisuras de flexión o de flexión-cortante. En el primer caso, la experiencia a través de los últimos años ha demostrado que se puede evitar prolongando el refuerzo hasta los apoyos o mediante el empleo de algún sistema de anclaje. Sin embargo, las recomendaciones para evitar el segundo caso de despegue aún se encuentran lejos de poder prever el fallo de forma eficiente. La necesidad de medir la adherencia experimentalmente de materiales FRP adheridos al hormigón ha dado lugar a desarrollar diversos métodos por la comunidad de investigadores. De estas campañas experimentales surgieron modelos para el pronóstico de la resistencia de adherencia, longitud efectiva y relación tensión-deslizamiento. En la presente tesis se propone un ensayo de beam-test, similar al utilizado para medir la adherencia de barras de acero, para determinar las características de adherencia del FRP al variar la resistencia del hormigón y el espesor del adhesivo. A la vista de los resultados, se considera que este ensayo puede ser utilizado para investigar diferentes tipos de adhesivos y otros métodos de aplicación, dado que representa con mayor realidad el comportamiento en vigas reforzadas. Los resultados experimentales se trasladan a la comprobación del fallo por despegue en la región de fisuras de flexión o flexión cortante en vigas de hormigón presentando buena concordancia. Los resultados condujeron a la propuesta de que la limitación de la deformación constituye una alternativa simple y eficiente para prever el citado modo de fallo. Con base en las vigas analizadas, se propone una nueva expresión para el cálculo de la limitación de la deformación del laminado y se lleva a cabo una comparación entre los modelos existentes mediante un análisis estadístico para evaluar su precisión. Abstract The use of composite materials for strengthening, repairing or rehabilitating concrete structures has become more and more popular in the last ten years. Irrespective of the type of strengthening used, design is conditioned, among others, by concrete-composite bond failure, normally attributed to stresses at the interface between these two materials. The mechanical properties of concrete and composite materials are very different. Composite materials commonly used in civil engineering possess high tensile strength (both static and long term) and they are linear elastic to failure, which, in contrast to the widely known behavior of concrete, there is a clear incompatibility which leads to bond-related failures. Bond failure in the composite material in bending- or shear-strengthened beams often controls bearing capacity of the strengthened member. Debonding failure of RC beams strengthened in bending by externally-bonded composite laminates takes place either, at the end (plate end debonding) or at flexure or flexure-shear cracks (intermediate crack debonding). In the first case, the experience over the past years has shown that this can be avoided by extending laminates up to the supports or by using an anchoring system. However, recommendations for the second case are still considered far from predicting failure efficiently. The need to experimentally measure FRP bonding to concrete has induced the scientific community to develop test methods for that purpose. Experimental campaigns, in turn, have given rise to models for predicting bond strength, effective length and the stress-slip relationship. The beam-type test proposed and used in this thesis to determine the bonding characteristics of FRP at varying concrete strengths and adhesive thicknesses was similar to the test used for measuring steel reinforcement to concrete bonding conditions. In light of the findings, this test was deemed to be usable to study different types of adhesives and application methods, since it reflects the behavior of FRP in strengthened beams more accurately than the procedures presently in place. Experimental results are transferred to the verification of peeling-off at flexure or flexure-shear cracks, presenting a good general agreement. Findings led to the conclusion that the strain limitation of laminate produces accurate predictions of intermediate crack debonding. A new model for strain limitation is proposed. Finally, a comprehensive evaluation based on a statistical analysis among existing models is carried out in order to assess their accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The continual eruptive activity, occurrence of an ancestral catastrophic collapse, and inherent geologic features of Pacaya volcano (Guatemala) demands an evaluation of potential collapse hazards. This thesis merges techniques in the field and laboratory for a better rock mass characterization of volcanic slopes and slope stability evaluation. New field geological, structural, rock mechanical and geotechnical data on Pacaya is reported and is integrated with laboratory tests to better define the physical-mechanical rock mass properties. Additionally, this data is used in numerical models for the quantitative evaluation of lateral instability of large sector collapses and shallow landslides. Regional tectonics and local structures indicate that the local stress regime is transtensional, with an ENE-WSW sigma 3 stress component. Aligned features trending NNW-SSE can be considered as an expression of this weakness zone that favors magma upwelling to the surface. Numerical modeling suggests that a large-scale collapse could be triggered by reasonable ranges of magma pressure (greater than or equal to 7.7 MPa if constant along a central dyke) and seismic acceleration (greater than or equal to 460 cm/s2), and that a layer of pyroclastic deposits beneath the edifice could have been a factor which controlled the ancestral collapse. Finally, the formation of shear cracks within zones of maximum shear strain could provide conduits for lateral flow, which would account for long lava flows erupted at lower elevations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crack is a significant influential factor in soil slope that could leads to rainfall-induced slope instability. Existence of cracks at soil surface will decrease the shear strength and increase the hydraulic conductivity of soil slope. Although previous research has shown the effect of surface-cracks in soil stability, the influence of deep-cracks on soil stability is still unknown. The limited availability of deep crack data due to the difficulty of effective investigate methods could be one of the obstacles. Current technology in electrical resistivity can be used to detect deep-cracks in soil. This paper discusses deep cracks in unsaturated residual soil slopes in Indonesia using electrical resistivity method. The field investigation such as bore hole and SPT tests was carried out at multiple locations in the area where the electrical resistivity testing have been conducted. Subsequently, the results from bore-hole and SPT test were used to verify the results of the electrical resistivity test. This study demonstrates the benefits and limitations of the electrical resistivity in detecting deep-cracks in a residual soil slopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rainfall can disrupt the balance of natural soil slope. This imbalance will be accelerated by existence of cracks in soil slope, which lead to decreasing shear strength and increasing hydraulic conductivity of the soil slope. Some research works have been conducted on the effects of surface-cracks on slope stability. However, the influence of deep-cracks is yet to be investigated. Limited availability of deep crack data due to the lack of effective sub-soil investigation methods could be one of the obstacles. To emphasize the effects of deep cracks in soil slope on its rain-induced instability, a natural soil slope in Indonesia that failed in 31st October 2010 due to heavy rainfall was analyzed for stability with and without deep cracks in the slope. The slope stability analysis was conducted using SLOPE/W coupling with the results of transient seepage analysis (SEEP/W) that simulate the pore-water pressure development in the slope during the rainfall. The results of Electrical Resistivity Tomography (ERT) survey, bore-hole tests and geometrical survey conducted on the slope before its failure were used to identify the soil layers’ stratification including deep cracks, the properties of different soil layers, and geometrical parameters of the slope for the analysis. The results showed that it is vital to consider the existence of deep crack in soil slopes in analysing their instability induced by rainfalls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite element model for the analysis of laminated composite cylindrical shells with through cracks is presented. The analysis takes into account anisotropic elastic behaviour, bending-extensional coupling and transverse shear deformation effects. The proposed finite element model is based on the approach of dividing a cracked configuration into triangular shaped singular elements around the crack tip with adjoining quadrilateral shaped regular elements. The parabolic isoparametric cylindrical shell elements (both singular and regular) used in this model employ independent displacement and rotation interpolation in the shell middle surface. The numerical comparisons show the evidence to the conclusion that the proposed model will yield accurate stress intensity factors from a relatively coarse mesh. Through the analysis of a pressurised fibre composite cylindrical shell with an axial crack, the effect of material orthotropy on the crack tip stress intensity factors is shown to be quite significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the feasibility of an on-line damage detection capability for helicopter main rotor blades made of composite material. Damage modeled in the composite is matrix cracking. A box-beam with stiffness properties similar to a hingeless rotor blade is designed using genetic algorithm for the typical [+/-theta(m)/90(n)](s) family of composites. The effect of matrix cracks is included in an analytical model of composite box-beam. An aeroelastic analysis of the helicopter rotor based on finite elements in space and time is used to study the effects of matrix cracking in the rotor blade in forward flight. For global fault detection, rotating frequencies, tip bending and torsion response, and blade root loads are studied. It is observed that the effect of matrix cracking on lag bending and elastic twist deflection at the blade tip and blade root yawing moment is significant and these parameters can be monitored for online health monitoring. For implementation of local fault detection technique, the effect on axial and shear strain, for matrix cracks in the whole blade as well as matrix cracks occurring locally is studied. It is observed that using strain measurement along the blade it is possible to locate the matrix cracks as well as to predict density of matrix cracks. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass was studied by in situ scanning electron microscopy (SEM) quasi-static uniaxial compression tests at room temperature. Multiple shear bands were observed with a large plasticity. Microscopic examination demonstrates that slipping, branching and intersecting of multiple shear bands are the main mechanisms for enhancing the plasticity of this metallic glass. Additionally, nano/micro-scale voids and cracks at the intersecting sites of shear bands and preferential etching of shear bands were observed as well. These observations demonstrated that the formation of shear bands in bulk metallic glasses is resulted mainly from local free volume coalescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.