240 resultados para Interphase
Resumo:
Chemical reaction studies of N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide-based ionic liquid with the lithium metal surface were performed using ab initio molecular dynamics (aMD) simulations and X-ray Photoelectron Spectroscopy (XPS). The molecular dynamics simulations showed rapid and spontaneous decomposition of the ionic liquid anion, with subsequent formation of long-lived species such as lithium fluoride. The simulations also revealed the cation to retain its structure by generally moving away from the lithium surface. The XPS experiments showed evidence of decomposition of the anion, consistent with the aMD simulations and also of cation decomposition and it is envisaged that this is due to the longer time scale for the XPS experiment compared to the time scale of the aMD simulation. Overall experimental results confirm the majority of species suggested by the simulation. The rapid chemical decomposition of the ionic liquid was shown to form a solid electrolyte interphase composed of the breakdown products of the ionic liquid components in the absence of an applied voltage.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Resumo:
Near the boundaries of shells, thin shell theories cannot always provide a satisfactory description of the kinematic situation. This imposes severe limitations on simulating the boundary conditions in theoretical shell models. Here an attempt is made to overcome the above limitation. Three-dimensional theory of elasticity is used near boundaries, while thin shell theory covers the major part of the shell away from the boundaries. Both regions are connected by means of an “interphase element.” This method is used to study typical static stress and natural vibration problems
Resumo:
The compounds Zn(C12H8N2)](2)C12N2H8(COO)(2)](2)center dot(C6H12O)center dot(H2O), I, Zn(C12H8N2)]C12N2H8(COO)(2)], II, Cd(C12H8N2)(H2O)]C12N2H8(COO)(2)]center dot(H2O), III, Zn(C10N2H8)]C12N2H8(COO)(2)]center dot 0.5(C10N2H8), IV, Cd(C12N2H8(COO)(2)center dot H2O], V, and Zn-3(mu(2)-O)(mu(3)-O)(3)]C12N2H8(COO)(2)], VI, have been synthesized by using a biphasic approach (I, III, V, VI) or regular hydrothermal method (II, IV). The compounds exhibit one (I and II), two (In), and three dimensionally (IV, V, VI) extended structures. The flexible azodibenzoate ligand gives rise to a 3-fold interpenetration (IV) when the synthesis was carried out using normal hydrothermal methods. The biphasic approach forms structures without any interpenetrations, especially in the three-dimensional structures of V and VI. Formation of Cd2O2 dimers in V and extended M-O(H)-M two-dimensional layers in VI suggests the subtle structural control achieved by the biphasic method. Transformation studies indicate that it is possible to transform I to II. Lewis acid catalytic studies have been performed to evaluate the role of the coordination environment in such reactions. All the compounds have been characterized by a variety of techniques that includes powder X-ray diffraction, infrared, thermogravitric analysis, UV-vis, photoluminescence studies.
Resumo:
In directional solidification of binary eutectics, it is often observed that two-phase lamellar growth patterns grow tilted with respect to the direction z of the imposed temperature gradient. This crystallographic effect depends on the orientation of the two crystal phases alpha and beta with respect to z. Recently, an approximate theory was formulated that predicts the lamellar tilt angle as a function of the anisotropy of the free energy of the solid(alpha)-solid(beta) interphase boundary. We use two different numerical methods-phase field (PF) and dynamic boundary integral (BI)-to simulate the growth of steady periodic patterns in two dimensions as a function of the angle theta(R) between z and a reference crystallographic axis for a fixed relative orientation of alpha and beta crystals, that is, for a given anisotropy function (Wulff plot) of the interphase boundary. For Wulff plots without unstable interphase-boundary orientations, the two simulation methods are in excellent agreement with each other and confirm the general validity of the previously proposed theory. In addition, a crystallographic ``locking'' of the lamellae onto a facet plane is well reproduced in the simulations. When unstable orientations are present in the Wulff plot, it is expected that two distinct values of the tilt angle can appear for the same crystal orientation over a finite theta(R) range. This bistable behavior, which has been observed experimentally, is well reproduced by BI simulations but not by the PF model. Possible reasons for this discrepancy are discussed.
Resumo:
Heterophase structures in lead-free perovskite-type ferroelectric solid solutions of (1 - z)(Na0.5Bi0.5)TiO3 - zBaTiO(3) are analysed for a few critical compositions near the morphotropic phase boundary (z = 0.05-0.07). Examples of the phase coexistence and elastic matching of the phases from different symmetry groups are considered to find optimum volume fractions of specific domain types and coexisting phases at the complete stress relief in two-phase samples. Some interrelations between these volume fractions are described using variants of the domain arrangement at changes in the composition and unit-cell parameters. The evaluated room-temperature volume fractions of the ferroelectric monoclinic (Cm symmetry) and tetragonal (P4mm symmetry) phases near the morphotropic phase boundary are in agreement with experimental data.
Resumo:
On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.
Resumo:
In the case of suspension flows, the rate of interphase momentum transfer M(k) and that of interphase energy transfer E(k), which were expressed as a sum of infinite discontinuities by Ishii, have been reduced to the sum of several terms which have concise physical significance. M(k) is composed of the following terms: (i) the momentum carried by the interphase mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii) the interphase force produced by the concentration gradient of the dispersed phase in a pressure field. And E(k) is composed of the following four terms, that is, the energy carried by the interphase mass transfer, the work produced by the interphase forces of the second and third parts above, and the heat transfer between phases. It is concluded from the results that (i) the term, (-alpha-k-nabla-p), which is related to the pressure gradient in the momentum equation, can be derived from the basic conservation laws without introducing the "shared-pressure presumption"; (ii) the mean velocity of the action point of the interphase drag is the mean velocity of the interface displacement, upsilonBAR-i. It is approximately equal to the mean velocity of the dispersed phase, upsilonBAR-d. Hence the work terms produced by the drag forces are f(dc) . upsilonBAR-d, and f(cd) . upsilonBAR-d, respectively, with upsilonBAR-i not being replaced by the mean velocity of the continuous phase, upsilonBAR-c; (iii) by analogy, the terms of the momentum transfer due to phase change are upsilonBAR-d-GAMMA-c, and upsilonBAR-d-GAMMA-d, respectively; (iv) since the transformation between explicit heat and latent heat occurs in the process of phase change, the algebraic sum of the heat transfer between phases is not equal to zero. Q(ic) and Q(id) are composed of the explicit heat and latent heat, so that the sum Q(ic) + Q(id)) is equal to zero.
Resumo:
Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis
Resumo:
For the potential influence produced by the reinforcement/matrix interphase in particle reinforced metal matrix composites (PMMCs), a unit cell model with transition interphase was proposed. Uniaxial tensile loading was simulated and the stress/strain behavior was predicted. The results show that a transition interphase with both appropriate strength and thickness could affect the failure mode, reduce the stress concentration, and enhance the maximum strain value of the composite.