998 resultados para Internet Routing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Internet has grown in size at rapid rates since BGP records began, and continues to do so. This has raised concerns about the scalability of the current BGP routing system, as the routing state at each router in a shortest-path routing protocol will grow at a supra-linearly rate as the network grows. The concerns are that the memory capacity of routers will not be able to keep up with demands, and that the growth of the Internet will become ever more cramped as more and more of the world seeks the benefits of being connected. Compact routing schemes, where the routing state grows only sub-linearly relative to the growth of the network, could solve this problem and ensure that router memory would not be a bottleneck to Internet growth. These schemes trade away shortest-path routing for scalable memory state, by allowing some paths to have a certain amount of bounded “stretch”. The most promising such scheme is Cowen Routing, which can provide scalable, compact routing state for Internet routing, while still providing shortest-path routing to nearly all other nodes, with only slightly stretched paths to a very small subset of the network. Currently, there is no fully distributed form of Cowen Routing that would be practical for the Internet. This dissertation describes a fully distributed and compact protocol for Cowen routing, using the k-core graph decomposition. Previous compact routing work showed the k-core graph decomposition is useful for Cowen Routing on the Internet, but no distributed form existed. This dissertation gives a distributed k-core algorithm optimised to be efficient on dynamic graphs, along with with proofs of its correctness. The performance and efficiency of this distributed k-core algorithm is evaluated on large, Internet AS graphs, with excellent results. This dissertation then goes on to describe a fully distributed and compact Cowen Routing protocol. This protocol being comprised of a landmark selection process for Cowen Routing using the k-core algorithm, with mechanisms to ensure compact state at all times, including at bootstrap; a local cluster routing process, with mechanisms for policy application and control of cluster sizes, ensuring again that state can remain compact at all times; and a landmark routing process is described with a prioritisation mechanism for announcements that ensures compact state at all times.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Classical measures of network connectivity are the number of disjoint paths between a pair of nodes and the size of a minimum cut. For standard graphs, these measures can be computed efficiently using network flow techniques. However, in the Internet on the level of autonomous systems (ASs), referred to as AS-level Internet, routing policies impose restrictions on the paths that traffic can take in the network. These restrictions can be captured by the valley-free path model, which assumes a special directed graph model in which edge types represent relationships between ASs. We consider the adaptation of the classical connectivity measures to the valley-free path model, where it is -hard to compute them. Our first main contribution consists of presenting algorithms for the computation of disjoint paths, and minimum cuts, in the valley-free path model. These algorithms are useful for ASs that want to evaluate different options for selecting upstream providers to improve the robustness of their connection to the Internet. Our second main contribution is an experimental evaluation of our algorithms on four types of directed graph models of the AS-level Internet produced by different inference algorithms. Most importantly, the evaluation shows that our algorithms are able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free path model in reasonable time. Furthermore, our experimental results provide information about the characteristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms yield topologies that are similar with respect to connectivity and are different with respect to the types of paths that exist between pairs of ASs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’augmentation du nombre d’usagers de l’Internet a entraîné une croissance exponentielle dans les tables de routage. Cette taille prévoit l’atteinte d’un million de préfixes dans les prochaines années. De même, les routeurs au cœur de l’Internet peuvent facilement atteindre plusieurs centaines de connexions BGP simultanées avec des routeurs voisins. Dans une architecture classique des routeurs, le protocole BGP s’exécute comme une entité unique au sein du routeur. Cette architecture comporte deux inconvénients majeurs : l’extensibilité (scalabilité) et la fiabilité. D’un côté, la scalabilité de BGP est mesurable en termes de nombre de connexions et aussi par la taille maximale de la table de routage que l’interface de contrôle puisse supporter. De l’autre côté, la fiabilité est un sujet critique dans les routeurs au cœur de l’Internet. Si l’instance BGP s’arrête, toutes les connexions seront perdues et le nouvel état de la table de routage sera propagé tout au long de l’Internet dans un délai de convergence non trivial. Malgré la haute fiabilité des routeurs au cœur de l’Internet, leur résilience aux pannes est augmentée considérablement et celle-ci est implantée dans la majorité des cas via une redondance passive qui peut limiter la scalabilité du routeur. Dans cette thèse, on traite les deux inconvénients en proposant une nouvelle approche distribuée de BGP pour augmenter sa scalabilité ainsi que sa fiabilité sans changer la sémantique du protocole. L’architecture distribuée de BGP proposée dans la première contribution est faite pour satisfaire les deux contraintes : scalabilité et fiabilité. Ceci est accompli en exploitant adéquatement le parallélisme et la distribution des modules de BGP sur plusieurs cartes de contrôle. Dans cette contribution, les fonctionnalités de BGP sont divisées selon le paradigme « maître-esclave » et le RIB (Routing Information Base) est dupliqué sur plusieurs cartes de contrôle. Dans la deuxième contribution, on traite la tolérance aux pannes dans l’architecture élaborée dans la première contribution en proposant un mécanisme qui augmente la fiabilité. De plus, nous prouvons analytiquement dans cette contribution qu’en adoptant une telle architecture distribuée, la disponibilité de BGP sera augmentée considérablement versus une architecture monolithique. Dans la troisième contribution, on propose une méthode de partitionnement de la table de routage que nous avons appelé DRTP pour diviser la table de BGP sur plusieurs cartes de contrôle. Cette contribution vise à augmenter la scalabilité de la table de routage et la parallélisation de l’algorithme de recherche (Best Match Prefix) en partitionnant la table de routage sur plusieurs nœuds physiquement distribués.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What kind of science is appropriate for understanding the Facebook? How does Google find what you're looking for... ...and exactly how do they make money doing so? What structural properties might we expect any social network to have? How does your position in an economic network (dis)advantage you? How are individual and collective behavior related in complex networks? What might we mean by the economics of spam? What do game theory and the Paris subway have to do with Internet routing? What's going on in the pictures to the left and right? Networked Life looks at how our world is connected -- socially, economically, strategically and technologically -- and why it matters. The answers to the questions above are related. They have been the subject of a fascinating intersection of disciplines including computer science, physics, psychology, mathematics, economics and finance. Researchers from these areas all strive to quantify and explain the growing complexity and connectivity of the world around us, and they have begun to develop a rich new science along the way. Networked Life will explore recent scientific efforts to explain social, economic and technological structures -- and the way these structures interact -- on many different scales, from the behavior of individuals or small groups to that of complex networks such as the Internet and the global economy. This course covers computer science topics and other material that is mathematical, but all material will be presented in a way that is accessible to an educated audience with or without a strong technical background. The course is open to all majors and all levels, and is taught accordingly. There will be ample opportunities for those of a quantitative bent to dig deeper into the topics we examine. The majority of the course is grounded in scientific and mathematical findings of the past two decades or less.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O advento de novas formas multimídia tem atraído uma clientela exigente, onde preocupação não é somente com o serviço, mas também, com a qualidade que esse serviço pode ser oferecido. As WLAN (Wireless Local Area Networks) tornaram-se a forma mais comum de roteamento de Internet, devido ao seu baixo custo e facilidade de implementação. Para realizar um bom roteamento é necessário um planejamento, utilizando-se modelos. Os modelos de propagação existentes na literatura fazem a predição da intensidade do sinal, mas algumas vezes não contemplam a previsão de um bom serviço. Nesse sentido a presente dissertação propõe-se a elaborar um modelo de propagação empírico indoor multi-andar que não só prediz a potência recebida, mas também faz uma previsão para algumas métricas de QoS (Quality of Service) de chamadas VoIP (Voice over Internet Protocol). Para a elaboração do modelo proposto foram feitas campanhas de medição, em um prédio de dois andares, em pisos distintos mantendo-se a posição do ponto de acesso (PA) fixa. Estudos de geometria analítica para a contagem e agregação de perdas em pisos e paredes. Os resultados do modelo proposto foram comparados com um modelo da literatura que tem um comportamento similar, onde é possível verificar o melhor desempenho do modelo proposto, e para efeito de estudo um andar completamente simulado foi introduzido para avaliação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis doctoral está enmarcada en dos diferentes pero complementarias áreas de investigación: las redes de Publicación/Subscripción y los servicios móviles distribuidos. Con el paso de los años las redes de Publicación/Subscripción han ido ofreciendo el soporte de comunicaciones desacopladas y ligeras que a su vez, han mejorado la distribución de la información en muchos escenarios de aplicación como lo son la ejecución de servicios distribuidos en entornos fijos. Los servicios móviles distribuidos han de ser desplegados en ambientes inalámbricos en donde los dispositivos móviles deben confiar en las mismas características que las redes de Publicación/Subscripción han estado ofreciendo a sus contrapartes fijos. En este contexto, una de las líneas de investigación pendientes consiste en cómo tomar ventaja de estas características, y cómo avanzar hacia nuevas soluciones no existentes con el fin de mejorar la integración entre los dispositivos fijos y móviles, y la ejecución de los servicios móviles distribuidos. En esta tesis doctoral se pretende avanzar en los mecanismos de integración y coordinación de los servicios móviles distribuidos en el contexto de las redes de Publicación/Subscripción. Los objetivos específicos de esta disertación están enfocados en lograr la integración de los sistemas de Publicación/Suscripción fijos y móviles, y la pro-visión de una versión de red de Publicación/Subscripción específica y uniforme que cuente con mecanismos de coordinación que mejoren la ejecución de los servicios móviles distribuidos. Los resultados de esta tesis doctoral están enmarcados en una versión específica de una red de Publicación/Subscripción que integra brokers fijos y móviles, y permite una coordinación totalmente desacoplada y mejorada entre dispositivos móviles que ejecutan fragmentos de servicios. Las contribuciones específicas son las siguientes: una nueva arquitectura de broker móvil que he llamado Rendezvous Mobile broker, un modelo abstracto de servicios móviles distribuidos coordinados sobre una red de Publicación/Subscripción, mejoras en los mecanismos de enrutamiento epidémicos para diseminar eventos de control producidos por fragmentos de servicios, una solución para soportar servicios altamente fragmentados y geográficamente dispersos, y finalmente una solución de interconexión entre dos dominios de red basados en Publicación/Subscripción: una red basada en el protocolo PubSubHubbub y otro en una red basada en el Publish/Subscribe Internet Routing Paradigm (PSIRP). Los experimentos llevados a cabo confirman que la versión específica de red de Pu-blicación/Subscripción propuesta incrementa el rendimiento de la red en términos de tiempo de espera entre nodos finales, permite una coordinación de los servicios móviles distribuidos más resistente a interrupciones y un mejor uso de los recursos de red, y finalmente logra exitosamente, con variaciones mínimas en el rendimiento de las comunicaciones, la interconexión entre estos dominios de Publicación/Subscripción diferentes. ABSTRACT This dissertation is made up of two different but complementary research areas: Publish/Subscribe networks and mobile distributed services. Over the years, Publish/Subscribe networks have been offering the lightweight and decoupled communication characteristics to improve the information distribution in several application domains such as the execution of distributed services. Mobile distributed services are set to be deployed in wireless environments where mobile devices must rely on the same features Publish/Subscribe networks can offer; so one of the pending research directions consists of how to take advantage of these features and further advance to-wards new un-existing solutions that enhance the integration between mobile and fixed systems and the execution of mobile distributed services. This dissertation seeks to advance the integration and coordination mechanisms of mobile distributed services in the context of Publish/Subscribe networks. The specific objectives aim to enable the integration of mobile and fixed Publish/Subscribe systems and provide a uniform and specific version of a Publish/Subscribe network with new coordination mechanisms that improve the execution of mobile distributed services. The results of this dissertation are enclosed in one specific version of a Publish/Subscribe network that integrates mobile and fixed brokers and coordinates the execution of mobile distributed services. These specific contributions are: a new architecture of a mobile broker I called Rendezvous Mobile Broker, an abstract model for coordinating mobile distributed services executions using a Publish/Subscribe net-work, new gossip routing solutions to disseminate events of services, mechanisms to support highly partitioned and geographically dispersed services and finally, an inter-networking solution between two Publish/Subscribe domains: a PubSubHubbub-based network and the Publish/Subscribe Internet Routing Paradigm (PSIRP)-based network. The experimental efforts confirm that the specific version of the Publish/Subscribe proposed in this dissertation improves the performance of the overall network in terms of end-to-end delay, enables a more resilience execution of mobile distributed services, a better usage of the existing network resources, and finally successfully achieves, with minor variations in the network performance, the internetworking between two different Publish/Subscribe domains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new framework to perform routing at the autonomous system (AS) level is proposed here. This mechanism, called chain routing framework (CRF), uses complete orders as its main topological unit. Since complete orders are acyclic digraphs that possess a known topology, it is possible to use these acyclic structures to route consistently packets between a group of ASs. The adoption of complete orders also allows easy identification and avoidance of persistent route oscillations, eliminates the possibility of developing transient loops in paths and provides a structure that facilitates the implementation of traffic engineering. Moreover, by combining CRF with other mechanisms that implement complete orders in time, the authors propose that it is possible to design a new routing protocol, which can be more reliable and stable than the border gateway protocol. © 2011 The Institution of Engineering and Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 6loWPAN (the light version of IPv6) and RPL (routing protocol for low-power and lossy links) protocols have become de facto standards for the Internet of Things (IoT). In this paper, we show that the two native algorithms that handle changes in network topology – the Trickle and Neighbor Discovery algorithms – behave in a reactive fashion and thus are not prepared for the dynamics inherent to nodes mobility. Many emerging and upcoming IoT application scenarios are expected to impose real-time and reliable mobile data collection, which are not compatible with the long message latency, high packet loss and high overhead exhibited by the native RPL/6loWPAN protocols. To solve this problem, we integrate a proactive hand-off mechanism (dubbed smart-HOP) within RPL, which is very simple, effective and backward compatible with the standard protocol. We show that this add-on halves the packet loss and reduces the hand-off delay dramatically to one tenth of a second, upon nodes’ mobility, with a sub-percent overhead. The smart-HOP algorithm has been implemented and integrated in the Contiki 6LoWPAN/RPL stack (source-code available on-line mrpl: smart-hop within rpl, 2014) and validated through extensive simulation and experimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet of Things (IoT) has emerged as a paradigm over the last few years as a result of the tight integration of the computing and the physical world. The requirement of remote sensing makes low-power wireless sensor networks one of the key enabling technologies of IoT. These networks encompass several challenges, especially in communication and networking, due to their inherent constraints of low-power features, deployment in harsh and lossy environments, and limited computing and storage resources. The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) [1] was proposed by the IETF ROLL (Routing Over Low-power Lossy links) working group and is currently adopted as an IETF standard in the RFC 6550 since March 2012. Although RPL greatly satisfied the requirements of low-power and lossy sensor networks, several issues remain open for improvement and specification, in particular with respect to Quality of Service (QoS) guarantees and support for mobility. In this paper, we focus mainly on the RPL routing protocol. We propose some enhancements to the standard specification in order to provide QoS guarantees for static as well as mobile LLNs. For this purpose, we propose OF-FL (Objective Function based on Fuzzy Logic), a new objective function that overcomes the limitations of the standardized objective functions that were designed for RPL by considering important link and node metrics, namely end-to-end delay, number of hops, ETX (Expected transmission count) and LQL (Link Quality Level). In addition, we present the design of Co-RPL, an extension to RPL based on the corona mechanism that supports mobility in order to overcome the problem of slow reactivity to frequent topology changes and thus providing a better quality of service mainly in dynamic networks application. Performance evaluation results show that both OF-FL and Co-RPL allow a great improvement when compared to the standard specification, mainly in terms of packet loss ratio and average network latency. 2015 Elsevier B.V. Al

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventionally the problem of the best path in a network refers to the shortest path problem. However, for the vast majority of networks present nowadays this solution has some limitations which directly affect their proper functioning, as well as an inefficient use of their potentialities. Problems at the level of large networks where graphs of high complexity are commonly present as well as the appearing of new services and their respective requirements, are intrinsically related to the inability of this solution. In order to overcome the needs present in these networks, a new approach to the problem of the best path must be explored. One solution that has aroused more interest in the scientific community considers the use of multiple paths between two network nodes, where they can all now be considered as the best path between those nodes. Therefore, the routing will be discontinued only by minimizing one metric, where only one path between nodes is chosen, and shall be made by the selection of one of many paths, thereby allowing the use of a greater diversity of the present paths (obviously, if the network consents). The establishment of multi-path routing in a given network has several advantages for its operation. Its use may well improve the distribution of network traffic, improve recovery time to failure, or it can still offer a greater control of the network by its administrator. These factors still have greater relevance when networks have large dimensions, as well as when their constitution is of high complexity, such as the Internet, where multiple networks managed by different entities are interconnected. A large part of the growing need to use multipath protocols is associated to the routing made based on policies. Therefore, paths with different characteristics can be considered with equal level of preference, and thus be part of the solution for the best way problem. To perform multi-path routing using protocols based only on the destination address has some limitations but it is possible. Concepts of graph theory of algebraic structures can be used to describe how the routes are calculated and classified, enabling to model the routing problem. This thesis studies and analyzes multi-path routing protocols from the known literature and derives a new algebraic condition which allows the correct operation of these protocols without any network restriction. It also develops a range of software tools that allows the planning and the respective verification/validation of new protocols models according to the study made.