994 resultados para Internal resonance
Resumo:
Real-life structures often possess piecewise stiffness because of clearances or interference between subassemblies. Such an aspect can alter a system's fundamental free vibration response and leads to complex mode interaction. The free vibration behaviour of an L-shaped beam with a limit stop is analyzed by using the frequency response function and the incremental harmonic balance method. The presence of multiple internal resonances, which involve interactions among the first five modes and are extremely complex, have been discovered by including higher harmonics in the analysis. The results show that mode interaction may occur if the higher harmonics of a vibration mode are close to the natural frequency of a higher mode. The conditions for the existence of internal resonance are explored, and it is shown that a prerequisite is the presence of bifurcation points in the form of intersecting backbone curves. A method to compute such intersections by using only one harmonic in the free vibration solution is proposed. (C) 1996 Academic Press Limited
Resumo:
A limit stop is placed at the elbow of an L-shaped beam whose linear natural frequencies are nearly commensurable. As a result of this hardening device the non-linear system exhibits multiple internal resonances, which involve various degree of coupling between the first five modes of the beam in free vibration. A point load is so placed as to excite several modes and the resulting forced vibration is examined. In the undamped case, three in-phase and two out-of-phase solution branches have been found. The resonance curve is extremely complicated, with multiple branches and interactions between the first four modes. The amplitudes of the higher harmonics are highly influenced by damping, the presence of which can effectively attenuate internal resonances. Consequently parts of the resonance curve may be eliminated, with the resulting response comprising different distinctive branches. (C) 1996 Academic Press Limited
Resumo:
In this paper, we examine the nonlinear control method based on the saturation phenomenon and of systems coupled with quadratic nonlinear ties applied to a shear-building portal plane frame foundation that supports an unbalanced direct cut-rent with limited power supply (non-ideal system). We analyze the equations of motion by using the method of averaging and numerical simulation. The interaction of the non-ideal structure with the saturation controller may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. Special attention is focused on passage through resonance when the non-ideal excitation frequency is near the portal frame natural frequency and when the non-ideal system frequency is approximately twice the controller frequency (two-to-one internal resonance).
Resumo:
A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.
On non-ideal simple portal frame structural model: Experimental results under a non-ideal excitation
Resumo:
We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.
Resumo:
The present paper studies a system comprised of two blocks connected by springs and dampers, and a DC motor with limited power supply fixed on a block, characterizing a non-ideal problem. This DC motor exciting the system causes interactions between the motor and the structure supporting it. Because of that, the non-ideal mathematical formulation of the problem has one and a half extra degree of freedom than the ideal one. A suitable choice of physical parameters leads to internal resonance conditions, that is, its natural frequencies are multiple of each other, by a known integer quantity. The purpose here is to study the dynamic behavior of the system using an analytical method based on perturbation techniques. The literature shows that the averaging method is the more flexible method concerning non-ideal problems. Summarizing, an steady state solution in amplitude and phase coordinates was obtained with averaging method showing the dependence of the structure amplitudes with the rotation frequency of the motor. Moreover, this solution shows that on of the amplitude coordinates has influence in the determination of the stationary rotation frequency. The analytical solution obtained shows the presence of the rotation frequency in expressions representing the oscillations of the structure, and the presence of amplitude coordinates in expressions describing the dynamic motion of the DC motor. These characteristics show the influence not only of the motor on structure but also of the response of the structure on dynamical behavior of the motor. Copyright © 2005 by ASME.
Resumo:
A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van der Pol oscillator in the case of 1?:?1 internal resonance in the cases of weak and strong coupling. Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a multitude of complex behaviours. A two-time scales method is used to obtain the frequency-amplitude modulation. The internal resonance leads to an antiresonance response of the Duffing resonator and a stagnant response (a small shoulder in the curve) of the van der Pol oscillator. The stability of the dynamic motions is also analyzed. The coupled system shows a hysteretic response pattern and symmetry-breaking facets. Chaotic behaviour of the coupled system is also observed and the dependence of the system dynamics on the parameters are also studied using bifurcation analysis.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.