988 resultados para Internal friction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature internal-friction measurements have been used to study the universal low-energy excitations in glasses before and after crystallization in two glass ceramics, one based on MgO-Al2O3-SiO2 (Corning Code 9606) and one based on Li2O-Al2O3-SiO2 (Corning Code 9623). In the Code 9606 sample, the number density of excitations is greatly reduced, while in the Code 9623 sample, their number density remains practically unaltered in the crystallized state. These measurements confirm the conclusions reached by Cahill et al. (preceding paper), which were based on thermal measurements up to room temperature. These measurements also demonstrate the usefulness of internal friction as a tool for the study of these low-energy excitations, since internal friction is less sensitive to defects common to glass ceramics, like magnetic impurities and grain boundaries, which tend to dominate low-temperature specific heat and thermal conductivity, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal friction of nanocrystalline nickel is investigated by mechanical spectroscopy from 360 K to 120 K. Two relaxation peaks are found when nanocrystalline nickel is bent up to 10% strain at room temperature and fast cooling. However, these two peaks disappear when the sample is annealed at room temperature in vacuum for ten days. The occurrence and disappearance of the two relaxation peaks can be explained by the interactions of partial dislocations and point defects in nanocrystalline materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials. We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in ruthenocuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behaviour are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. Anelastic spectroscopy measurements were made using an inverted torsion pendulum, operating with an oscillation frequency of 38 Hz, temperature in the 90 and 310 K range, heating rate of 1 K/min, and vacuum better than 10(-3) Pa. The results show anelastic relaxation peaks at 210 K related to the presence of interstitial oxygen atoms. The peaks decrease significantly with the oxygen loss caused by the heat treatments in vacuum, appearing again after the annealing of the sample in an oxygen atmosphere. These observed peaks are clearly related to the additional oxygen atoms, with activation energy 0.13 and 0.36 eV, and can be explained in terms by diffusional jumps of interstitial oxygen in the RuO2 planes. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of internal friction as a function of temperature were carried out in samples of mobium containing different amounts of interstitial solutes (oxygen and nitrogen) and one sample of mobium containing initially only nitrogen as interstitial solute. The experimental spectra of internal friction as a function of temperature were obtained with a torsion pendulum of the inverted Ke-type and resolved, using the method of successive subtraction, into a series of constituent Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height (Q(max)(-1)) and temperature (T-p) of the peak, the activation energy (E) and the relaxation time (t(o)). The height, shape and temperature of these peaks depend on the concentration of interstitial elements. The observed peaks were associated with matrix-interstitial (Nb-O, Nb-N) and interstitial-interstitial (O-N) interaction processes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal friction measurements were made in the Nb-Ti alloy containing 0.3 wt. % of Ti, doped with various quantities of oxygen (0.04 to 0.08 wt. %) utilizing a torsion pendulum. These measurements were performed in the temperature range of 300 K to 700 K with the oscillation frequency about 1.0 Hz. The experimental results showed relaxation peaks due the stress induced ordering of oxygen atom and pairs of oxygen atom around the niobium atoms (metallic matrix) and around titanium atoms (substitutional solute).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured internal friction and frequency as a function of temperature in molybdenum containing oxygen and nitrogen in solid solution. These measurements were performed by a torsion pendulum operating in the temperature range of 300 K to 700 K with oscillation frequency about 1.0 Hz. The results showed the complex relaxation process identifying the stress induced ordering of oxygen and nitrogen atom around the molybdenum atoms of the metallic matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal friction and frequency measurements as a function of temperature have been carried out in Nb and Nb-Zr policrystalline samples, using a torsion pendulum in the temperature range between 300K and 700K the heating rate was 1K/min and the pressure was kept better than 5x10(-3) mbar. Metals with bce lattice containing solute atoms dissolved interstitially often show anelastic behaviour due to a process know as stress-induced ordering responsible for the appearance of Snoek peaks. In the Nb sample it has been identified two constituent peaks corresponding to the interstitial-matrix interactions (Nb-O and Nb-N), but for the Nb-Zr samples with interstitial solute concentrations very close to those measured for the unalloyed Nb, it was not observed any mechanical relaxation peaks due to the presence of oxygen and nitrogen in solid solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small, single-domain proteins typically fold via a compact transition-state ensemble in a process well fitted by a simple, two-state model. To characterize the rate-limiting conformational changes that underlie two-state folding, we have investigated experimentally the effects of changing solvent viscosity on the refolding of the IgG binding domain of protein L. In conjunction with numerical simulations, our results indicate that the rate-limiting conformational changes of the folding of this domain are strongly coupled to solvent viscosity and lack any significant “internal friction” arising from intrachain collisions. When compared with the previously determined solvent viscosity dependencies of other, more restricted conformational changes, our results suggest that the rate-limiting folding transition involves conformational fluctuations that displace considerable amounts of solvent. Reconciling evidence that the folding transition state ensemble is comprised of highly collapsed species with these and similar, previously reported results should provide a significant constraint for theoretical models of the folding process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract no. AF 18(600) 1000. File no. 10-16. AFOSR-TR-58-92. ASTIA AD 162133. Cornell University, Department of Engineering Physics."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract no. AF 18(600) 1000. File no. 10-16. AFOSR-TR-57-69. ASTIA AD 136597. Cornell University, Department of Engineering Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract no. AF 18(600) 1000. File no. 10-16. AFOSR-TR-57-11. ASTIA AD 120411. Cornell University, Department of Engineering Physics."