931 resultados para Interleukin-i Gene Complex
Resumo:
Objectives: The aim of the current study was to determine the contribution of interleukin (IL) 1 gene cluster polymorphisms previously implicated in susceptibility for ankylosing spondylitis (AS) to AS susceptibility in different populations worldwide. Methods: Nine polymorphisms in the IL1 gene cluster members IL1A (rs2856836, rs17561 and rs1894399), IL1B (rs16944), IL1F10 (rs3811058) and IL1RN (rs419598, the IL1RA VNTR, rs315952 and rs315951) were genotyped in 2675 AS cases and 2592 healthy controls recruited in 12 different centres in 10 countries. Association of variants with AS was tested by Mantel-Haenszel random effects analysis. Results: Strong association was observed with three single nucleotide polymorphisms (SNPs) in the IL1A gene (rs2856836, rs17561, rs1894399, p = 0.0036, 0.000019 and 0.0003, respectively). There was no evidence of significant heterogeneity of effects between centres, and no evidence of non-combinability of findings. The population attributable risk fraction of these variants in Caucasians is estimated at 4-6%. Conclusions: This study confirms that IL1A is associated with susceptibility to AS. Association of the other IL1 gene complex members could not be excluded in specific populations. Prospective meta-analysis is a useful tool in confirmation studies of genes associated with complex genetic disorders such as AS, providing sufficiently large sample sizes to produce robust findings often not achieved in smaller individual cohorts.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-I gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-IA. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^
Resumo:
Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Resumo:
Conventional major histocompatibility complex (MHC) class I genes encode molecules that present intracellular peptide antigens to T cells. They are ubiquitously expressed and regulated by interferon gamma. Two highly divergent human MHC class I genes, MICA and MICB, are regulated by promoter heat shock elements similar to those of HSP70 genes. MICA encodes a cell surface glycoprotein, which is not associated with beta 2-microglobulin, is conformationally stable independent of conventional class I peptide ligands, and almost exclusively expressed in gastrointestinal epithelium. Thus, this MHC class I molecule may function as an indicator of cell stress and may be recognized by a subset of gut mucosal T cells in an unusual interaction.
Resumo:
Ankylosing spondylitis (AS) is a common and highly heritable inflammatory arthropathy. Although the gene HLA-B27 is almost essential for the inheritance of the condition, it alone is not sufficient to explain the pattern of familial recurrence of the disease. We have previously demonstrated suggestive linkage of AS to chromosome 2q13, a region containing the interleukin 1 (IL-1) family gene cluster, which includes several strong candidates for involvement in the disease. In the current study, we describe strong association and transmission of IL-1 family gene cluster single-nucleotide polymorphisms and haplotypes with AS.
Resumo:
Objective: To test the association of interleukin 1 (IL1) gene family members with ankylosing spondylitis (AS), previously reported in Europid subjects, in an ethnically remote population. Methods: 200 Taiwanese Chinese AS patients and 200 ethnically matched healthy controls were genotyped for five single nucleotide polymorphisms (SNPs) and the IL1RN.VNTR, markers previously associated with AS. Allele, genotype, and haplotype frequencies were compared between cases and controls. Results: Association of alleles and genotypes of the markers IL1F10.3, IL1RN.4, and IL1RN.VNTR was observed with AS (p<0.05). Haplotypes of pairs of these markers and of the markers IL1RN.6/1 and IL1RN.6/2 were also significantly associated with AS. The strongest associations observed were with the marker IL1RN.4, and with the two-marker haplotype IL1RN.4-IL1RN.VNTR (both p = 0.004). Strong linkage disequilibrium was observed between all marker pairs except those involving IL1B-511 (D′ 0.4 to 0.9, p<0.01). Conclusions: The IL1 gene cluster is associated with AS in Taiwanese Chinese. This finding provides strong statistical support that the previously observed association of this gene cluster with AS is a true positive finding.
Resumo:
Interleukin-2 is one of the lymphokines secreted by T helper type 1 cells upon activation mediated by T-cell receptor (TCR) and accessory molecules. The ability to express IL-2 is correlated with T-lineage commitment and is regulated during T cell development and differentiation. Understanding the molecular mechanism of how IL-2 gene inducibility is controlled at each transition and each differentiation process of T-cell development is to understand one aspect of T-cell development. In the present study, we first attempted to elucidate the molecular basis for the developmental changes of IL-2 gene inducibility. We showed that IL-2 gene inducibility is acquired early in immature CD4- CD8-TCR- thymocytes prior to TCR gene rearrangement. Similar to mature T cells, a complete set of transcription factors can be induced at this early stage to activate IL-2 gene expression. The progression of these cells to cortical CD4^+CD8^+TCR^(1o) cells is accompanied by the loss of IL-2 gene inducibility. We demonstrated that DNA binding activities of two transcription factors AP-1 and NF-AT are reduced in cells at this stage. Further, the loss of factor binding, especially AP-1, is attributable to the reduced ability to activate expression of three potential components of AP-1 and NF-AT, including c-Fos, FosB, and Fra-2. We next examined the interaction of transcription factors and the IL-2 promoter in vivo by using the EL4 T cell line and two non-T cell lines. We showed an all-or-none phenomenon regarding the factor-DNA interaction, i.e., in activated T cells, the IL-2 promoter is occupied by sequence-specific transcription factors when all the transcription factors are available; in resting T cells or non-T cells, no specific protein-DNA interaction is observed when only a subset of factors are present in the nuclei. Purposefully reducing a particular set of factor binding activities in stimulated T cells using pharmacological agents cyclosporin A or forskolin also abolished all interactions. The results suggest that a combinatorial and coordinated protein-DNA interaction is required for IL-2 gene activation. The thymocyte experiments clearly illustrated that multiple transcription factors are regulated during intrathymic T-cell development, and this regulation in tum controls the inducibility of the lineage-specific IL-2 gene. The in vivo study of protein-DNA interaction stressed the combinatorial action of transcription factors to stably occupy the IL-2 promoter and to initiate its transcription, and provided a molecular mechanism for changes in IL-2 gene inducibility in T cells undergoing integration of multiple environmental signals.
Resumo:
Objective:
To determine whether polymorphisms in the interferon-? (IFN?)/interleukin-26 (IL-26; formerly, AK155) gene cluster contribute to sex-based differential susceptibility to rheumatoid arthritis (RA).
Methods:
Four microsatellite markers, located in a 118-kb interval that contains both the IFN? and IL-26 genes on chromosome 12q15, were typed in 251 patients with RA and 198 unrelated healthy controls (all of whom lived in Northern Ireland) by means of polymerase chain reaction–based fragment analysis.
Results:
Marker D12S2510, which is located 3 kb 3' from the IL-26 gene, was significantly associated with RA in women (corrected P [Pcorr] = 0.008, 2 degrees of freedom [2 df]) but not in men (P = 0.99, 2 df). A 3-marker haplotype, IFNGCA*13;D12S2510*8;D12S2511*9, was inferred that showed significant underrepresentation in women with RA (odds ratio 0.50, 95% confidence interval 0.32–0.78; P = 0.002, Pcorr = 0.03) but not in men with RA.
Conclusion:
Our results demonstrate that common polymorphisms in the IFN?/IL-26 gene region may contribute to sex bias in susceptibility to RA, by distorting the propensity of female carriers versus male carriers to contract this disease. These results conform to our recent observations of a role for this gene cluster in sex-based differential susceptibility to another Th1-type inflammatory disease, multiple sclerosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CONTEXTO: A neoplasia gástrica é a segunda causa mais comum de morte por câncer no mundo e o H. pylori é classificado como carcinógeno humano tipo I pela Organização Mundial de Saúde. Entretanto, apesar da elevada prevalência da infecção pelo H. pylori em todo mundo, menos de 3% de indivíduos portadores dessa bactéria desenvolvem neoplasias gástricas. Tal fato indica que a evolução para malignização possa estar associada a fatores bacterianos, do hospedeiro e do ambiente. OBJETIVOS: Investigou-se a associação do polimorfismo da região promotora do gene IL-8 (-251) e do genótipo do H. pylori, baseado nos alelos vacA e na presença do gene cagA, com a clínica e os dados histopatológicos. MÉTODOS: Em estudo prospectivo, 102 pacientes com câncer gástrico e 103 voluntários saudáveis foram analisados. O polimorfismo da IL-8 (-251) foi determinado pela reação de PCR-RFLP e sequenciamento. Para genotipagem dos alelos vacA e do gene cagA das cepas bacterianas foi utilizada a PCR. As biopsias gástricas foram avaliadas histologicamente. RESULTADOS: A sorologia para o H. pylori foi positiva em 101 (99%) de todos os pacientes analisados, e 98 (97%) deles foram colonizados por apenas uma cepa bacteriana. Em pacientes com monoinfecção, 82 (84%) das cepas bacterianas observadas apresentavam o genótipo s1b/m1. O gene cagA foi detectado em 74 (73%) dos pacientes infectados pelo H. pylori. A presença do gene cagA demonstrou estar associada com a presença do genótipo s1b/m1 do gene vacA (P = 0,002). Quanto ao polimorfismo do gene da IL-8 (-251), observou-se que os genótipos AA (P = 0,026) e AT (P = 0,005) foram mais frequentes no grupo de pacientes com adenocarcinoma gástrico. Comparando os diferentes tipos de cepas bacterianas isoladas, com o polimorfismo do gene da IL-8-251 e dados histopatológicos, observou-se que, portadores do alelo A (AT e AA) infectados por cepas virulentas (m1s1 cagA+), demonstraram risco aumentado de apresentar maior grau de inflamação (OR = 24,75 IC 95% 2,29-267,20 P = 0,004) e aumento da atividade neutrofílica (OR = 28,71 IC 95% 2.62-314 P = 0,002) na mucosa gástrica. CONCLUSÃO: Os resultados demonstram que a interação entre o polimorfismo do gene da IL-8, particularmente em portadores do alelo A, e o tipo de cepa infectante do H. pylori (s1m1 cagA positiva) desempenha importante função no desenvolvimento do câncer gástrico.
Resumo:
Objective: Previously, we identified that the ATC/TTC haplotype formed by polymorphisms in the Interleukin-(IL)8 gene conferred susceptibility to chronic periodontitis (CP). The aim of the study was to investigate whether the IL8 haplotype ATC/TTC was associated with the volume of gingival crevicular fluid (GCF), the concentration of interleukin IL-8 in the GCF, as well as periodontal conditions in patients with CP in comparison to controls without CP. Methods: Seventy-nine individuals (CP: n = 41, controls: n = 38) were grouped according to the presence (susceptible for CP) or absence (not susceptible for CP) of the IL8 ATC/TTC haplotype. After periodontal clinical evaluation, they were subdivided by the presence or absence of CP. GCF was collected from each patient and the IL-8 levels were determined by ELISA. The GCF volume of each subject was measured by means of a calibrated electronic device. Comparisons of means between carriers and non-carriers of the ATC/TTC haplotype were evaluated using the Mann-Whitney test. Linear regression and stepwise linear regression analysis were used to analyse the association of the GCF volume with potential covariates and their contribution for the phenotype. Results: We did not find significant differences of both periodontal conditions and IL-8 concentration in the GCF of patients with the presence or absence of the IL8 ATC/TTC haplotype. However, the GCF volume was significantly higher amongst the patients affected by CP that are absent for the IL8 ATC/TTC haplotype. In addition, linear regression analysis showed a statistically significant association between GCF volume and CP, IL8 haplotype ATC/TTC and IL-8 concentration. Conclusions: The IL8 haplotype of susceptibility to CP was neither associated with IL-8 cytokine levels nor with clinical periodontal parameters. Also, CP, IL8 haplotype and IL-8 concentration showed a positive association with the GCF volume levels in the studied patients. (c) 2012 Published by Elsevier Ltd.
Resumo:
A methicillin-resistant mecB-positive Macrococcus caseolyticus (strain KM45013) was isolated from the nares of a dog with rhinitis. It contained a novel 39-kb transposon-defective complete mecB-carrying staphylococcal cassette chromosome mec element (SCCmecKM45013). SCCmecKM45013 contained 49 coding sequences (CDSs), was integrated at the 3' end of the chromosomal orfX gene, and was delimited at both ends by imperfect direct repeats functioning as integration site sequences (ISSs). SCCmecKM45013 presented two discontinuous regions of homology (SCCmec coverage of 35%) to the chromosomal and transposon Tn6045-associated SCCmec-like element of M. caseolyticus JCSC7096: (i) the mec gene complex (98.8% identity) and (ii) the ccr-carrying segment (91.8% identity). The mec gene complex, located at the right junction of the cassette, also carried the β-lactamase gene blaZm (mecRm-mecIm-mecB-blaZm). SCCmecKM45013 contained two cassette chromosome recombinase genes, ccrAm2 and ccrBm2, which shared 94.3% and 96.6% DNA identity with those of the SCCmec-like element of JCSC7096 but shared less than 52% DNA identity with the staphylococcal ccrAB and ccrC genes. Three distinct extrachromosomal circularized elements (the entire SCCmecKM45013, ΨSCCmecKM45013 lacking the ccr genes, and SCCKM45013 lacking mecB) flanked by one ISS copy, as well as the chromosomal regions remaining after excision, were detected. An unconventional circularized structure carrying the mecB gene complex was associated with two extensive direct repeat regions, which enclosed two open reading frames (ORFs) (ORF46 and ORF51) flanking the chromosomal mecB-carrying gene complex. This study revealed M. caseolyticus as a potential disease-associated bacterium in dogs and also unveiled an SCCmec element carrying mecB not associated with Tn6045 in the genus Macrococcus.
Resumo:
The proinflammatory cytokine interleukin 1 (IL-1) activates the transcription of many genes encoding acute phase and proinflammatory proteins, a function mediated primarily by the transcription factor NF-κB. An early IL-1 signaling event is the recruitment of the Ser/Thr kinase IRAK to the type I IL-1 receptor (IL-1RI). Here we describe the function of a previously identified IL-1 receptor subunit designated IL-1 receptor accessory protein (IL-1RAcP). IL-1 treatment of cells induces the formation of a complex containing both IL-1RI and IL-1RAcP. IRAK is recruited to this complex through its association with IL-1RAcP. Overexpression of an IL-1RAcP mutant lacking its intracellular domain, the IRAK-binding domain, prevented the recruitment of IRAK to the receptor complex and blocked IL-1-induced NF-κB activation.
Resumo:
Previously, we established that natural killer (NK) cells from C57BL/6 (B6), but not BALB/c, mice lysed Chinese hamster ovary (CHO) cells, and we mapped the locus that determines this differential CHO-killing capacity to the NK gene complex on chromosome 6. The localization of Chok in the NK gene complex suggested that it may encode either an activating or an inhibitory receptor. Here, results from a lectin-facilitated lysis assay predicted that Chok is an activating B6 NK receptor. Therefore, we immunized BALB/c mice with NK cells from BALB.B6–Cmv1r congenic mice and generated a mAb, designated 4E4, that blocked B6-mediated CHO lysis. mAb 4E4 also redirected lysis of Daudi targets, indicating its reactivity with an activating NK cell receptor. Furthermore, only the 4E4+ B6 NK cell subset mediated CHO killing, and this lysis was abrogated by preincubation with mAb 4E4. Flow cytometric analysis indicated that mAb 4E4 specifically reacts with Ly-49D but not Ly-49A, B, C, E, G, H, or I transfectants. Finally, gene transfer of Ly-49DB6 into BALB/c NK cells conferred cytotoxic capacity against CHO cells, thus establishing that the Ly-49D receptor is sufficient to activate NK cells to lyse this target. Hence, Ly-49D is the Chok gene product and is a mouse NK cell receptor capable of directly triggering natural killing.