994 resultados para Interleukin-9
Resumo:
Asthma is a complex heritable inflammatory disorder of the airways associated with clinical signs of atopy and bronchial hyperresponsiveness. Recent studies localized a major gene for asthma to chromosome 5q31-q33 in humans. Thus, this segment of the genome represents a candidate region for genes that determine susceptibility to bronchial hyperresponsiveness and atopy in animal models. Homologs of candidate genes on human chromosome 5q31-q33 are found in four regions in the mouse genome, two on chromosome 18, and one each on chromosomes 11 and 13. We assessed bronchial responsiveness as a quantitative trait in mice and found it linked to chromosome 13. Interleukin 9 (IL-9) is located in the linked region and was analyzed as a gene candidate. The expression of IL-9 was markedly reduced in bronchial hyporesponsive mice, and the level of expression was determined by sequences within the qualitative trait locus (QTL). These data suggest a role for IL-9 in the complex pathogenesis of bronchial hyperresponsiveness as a risk factor for asthma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
T helper (Th) 9 cells are an important subpopulation of the CD4+ T helper cells. Due to their ability to secrete Interleukin-(IL-)9, Th9 cells essentially contribute to the expulsion of parasitic helminths from the intestinal tract but they play also an immunopathological role in the course of asthma. Recently, a beneficial function of Th9 cells in anti-tumor immune responses was published. In a murine melanoma tumor model Th9 cells were shown to enhance the anti-melanoma immune response via the recruitment of CD8+ T cells, dendritic cells and mast cells. In contrast to Th9 effector cells regulatory T cells (Tregs) are able to control an immune response with the aid of different suppressive mechanisms. Based on their ability to suppress an immune response Tregs are believed to be beneficial in asthma by diminishing excessive allergic reactions. However, concerning cancer they can have a detrimental function because Tregs inhibit an effective anti-tumor immune reaction. Thus, the analysis of Th9 suppression by Tregs is of central importance concerning the development of therapeutic strategies for the treatment of cancer and allergic diseases and was therefore the main objective of this PhD thesis.rnIn general it could be demonstrated that the development of Th9 cells can be inhibited by Tregs in vitro. The production of the lineage-specific cytokine IL-9 by developing Th9 cells was completely suppressed at a Treg/Th9 ratio of 1:1 on the transcriptional (qRT-PCR) as well as on the translational level (ELISA). In contrast, the expression of IRF4 that was found to strongly promote Th9 development was not reduced in the presence of Tregs, suggesting that IRF4 requires additional transcription factors to induce the differentiation of Th9 cells. In order to identify such factors, which regulate Th9 development and therefore represent potential targets for Treg-mediated suppressive mechanisms, a transcriptome analysis using “next-generation sequencing” was performed. The expression of some genes which were found to be up- or downregulated in Th9 cells in the presence of Tregs was validated with qRT-PCR. Time limitations prevented a detailed functional analysis of these candidate genes. Nevertheless, the analysis of the suppressive mechanisms revealed that Tregs probably suppress Th9 cells via the increase of the intracellular cAMP concentration. In contrast, IL-9 production by differentiated Th9 cells was only marginally affected by Tregs in vitro and in vivo analysis (asthma, melanoma model). Hence, Tregs represent very effective inhibitors of Th9 development whereas they have only a minimal suppressive influence on differentiated Th9 cells.rn
Resumo:
T helper type 9 (TH9) cells can mediate tumor immunity and participate in autoimmune and allergic inflammation in mice, but little is known about the TH9 cells that develop in vivo in humans. We isolated T cells from human blood and tissues and found that most memory TH9 cells were skin-tropic or skin-resident. Human TH9 cells coexpressed tumor necrosis factor-α and granzyme B and lacked coproduction of TH1/TH2/TH17 cytokines, and many were specific for Candida albicans. Interleukin-9 (IL-9) production was transient and preceded the up-regulation of other inflammatory cytokines. Blocking studies demonstrated that IL-9 was required for maximal production of interferon-γ, IL-9, IL-13, and IL-17 by skin-tropic T cells. IL-9-producing T cells were increased in the skin lesions of psoriasis, suggesting that these cells may contribute to human inflammatory skin disease. Our results indicate that human TH9 cells are a discrete T cell subset, many are tropic for the skin, and although they may function normally to protect against extracellular pathogens, aberrant activation of these cells may contribute to inflammatory diseases of the skin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND Tubulointerstitial lesions, characterized by tubular injury, interstitial fibrosis and the appearance of myofibroblasts, are the strongest predictors of the degree and progression of chronic renal failure. These lesions are typically preceded by macrophage infiltration of the tubulointerstitium, raising the possibility that these inflammatory cells promote progressive renal disease through fibrogenic actions on resident tubulointerstitial cells. The aim of the present study, therefore, was to investigate the potentially fibrogenic mechanisms of interleukin-1beta (IL-1beta), a macrophage-derived pro-inflammatory cytokine, on human proximal tubule cells (PTC). METHODS Confluent, quiescent, passage 2 PTC were established in primary culture from histologically normal segments of human renal cortex (N = 11) and then incubated in serum- and hormone-free media supplemented with either IL-1beta (0 to 4 ng/mL) or vehicle (control). RESULTS IL-1beta significantly enhanced fibronectin secretion by up to fourfold in a time- and concentration-dependent fashion. This was accompanied by significant (2.5- to 6-fold) increases in alpha-smooth muscle actin (alpha-SMA) expression, transforming growth factor beta (TGF-beta1) secretion, nitric oxide (NO) production, NO synthase 2 (NOS2) mRNA and lactate dehydrogenase (LDH) release. Cell proliferation was dose-dependently suppressed by IL-1beta. NG-methyl-l-arginine (L-NMMA; 1 mmol/L), a specific inhibitor of NOS, blocked NO production but did not alter basal or IL-1beta-stimulated fibronectin secretion. In contrast, a pan-specific TGF-beta neutralizing antibody significantly blocked the effects of IL-1beta on PTC fibronectin secretion (IL-1beta, 268.1 +/- 30.6 vs. IL-1beta+alphaTGF-beta 157.9 +/- 14.4%, of control values, P < 0.001) and DNA synthesis (IL-1beta 81.0 +/- 6.7% vs. IL-1beta+alphaTGF-beta 93.4 +/- 2.1%, of control values, P < 0.01). CONCLUSION IL-1beta acts on human PTC to suppress cell proliferation, enhance fibronectin production and promote alpha-smooth muscle actin expression. These actions appear to be mediated by a TGF-beta1 dependent mechanism and are independent of nitric oxide release.
Resumo:
Objectives: The aim of the current study was to determine the contribution of interleukin (IL) 1 gene cluster polymorphisms previously implicated in susceptibility for ankylosing spondylitis (AS) to AS susceptibility in different populations worldwide. Methods: Nine polymorphisms in the IL1 gene cluster members IL1A (rs2856836, rs17561 and rs1894399), IL1B (rs16944), IL1F10 (rs3811058) and IL1RN (rs419598, the IL1RA VNTR, rs315952 and rs315951) were genotyped in 2675 AS cases and 2592 healthy controls recruited in 12 different centres in 10 countries. Association of variants with AS was tested by Mantel-Haenszel random effects analysis. Results: Strong association was observed with three single nucleotide polymorphisms (SNPs) in the IL1A gene (rs2856836, rs17561, rs1894399, p = 0.0036, 0.000019 and 0.0003, respectively). There was no evidence of significant heterogeneity of effects between centres, and no evidence of non-combinability of findings. The population attributable risk fraction of these variants in Caucasians is estimated at 4-6%. Conclusions: This study confirms that IL1A is associated with susceptibility to AS. Association of the other IL1 gene complex members could not be excluded in specific populations. Prospective meta-analysis is a useful tool in confirmation studies of genes associated with complex genetic disorders such as AS, providing sufficiently large sample sizes to produce robust findings often not achieved in smaller individual cohorts.
Resumo:
Objective Ankylosing spondylitis (AS) is a common inflammatory arthritis affecting primarily the axial skeleton. IL23R is genetically associated with AS. This study was undertaken to investigate and characterize the role of interleukin-23 (IL-23) signaling in AS pathogenesis. Methods The study population consisted of patients with active AS (n = 17), patients with psoriatic arthritis (n = 8), patients with rheumatoid arthritis, (n = 9), and healthy subjects (n = 20). IL-23 receptor (IL-23R) expression in T cells was determined in each subject group, and expression levels were compared. Results The proportion of IL-23R-expressing T cells in the periphery was 2-fold higher in AS patients than in healthy controls, specifically driven by a 3-fold increase in IL-23R-positive γ/δ T cells in AS patients. The proportions of CD4+ and CD8+ cells that were positive for IL-17 were unchanged. This increased IL-23R expression on γ/δ T cells was also associated with enhanced IL-17 secretion, with no observable IL-17 production from IL-23R-negative γ/δ T cells in AS patients. Furthermore, γ/δ T cells from AS patients were heavily skewed toward IL-17 production in response to stimulation with IL-23 and/or anti-CD3/CD28. Conclusion Recently, mouse models have shown IL-17-secreting γ/δ T cells to be pathogenic in infection and autoimmunity. Our data provide the first description of a potentially pathogenic role of these cells in a human autoimmune disease. Since IL-23 is a maturation and growth factor for IL-17-producing cells, increased IL-23R expression may regulate the function of this putative pathogenic γ/δ T cell population.
Resumo:
Objectives. It has been shown previously that IL-23R variants are associated with AS. We conducted an extended analysis in the UK population and a meta-analysis with the previously published studies, in order to refine these IL-23R associations with AS. Methods. The UK case-control study included 730 new cases and 1331 healthy controls. In the extended study, the 730 cases were combined with 1088 published cases. Allelic associations were analysed using contingency tables. In the meta-analysis, 3482 cases and 3150 controls from four different published studies and the new UK cases were combined. DerSimonian-Laird test was used to calculate random effects pooled odds ratios (ORs). Results. In the UK case-control study with new cases, four of the eight SNPs showed significant associations, whereas in the extended UK study, seven of the eight IL-23R SNPs showed significant associations (P < 0.05) with AS, maximal with rs11209032 (P < 10-5, OR 1.3), when cases with IBD and/or psoriasis were excluded. The meta-analysis showed significant associations with all eight SNPs; the strongest associations were again seen not only with rs11209032 (P = 4.06 × 10-9, OR ∼1.2) but also with rs11209026 (P < 10-10, OR ∼0.6). Conclusions. IL-23R polymorphisms are clearly associated with AS, but the primary causal association(s) is(are) still not established. These polymorphisms could contribute either increased or decreased susceptibility to AS; functional studies will be required for their full evaluation. Additionally, observed stronger associations with SNPs rs11209026 and rs11465804 upon exclusion of IBD and/or psoriasis cases may represent an independent association with AS. © The Author 2009. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved.
Resumo:
STUDY QUESTION Are single-nucleotide polymorphisms (SNPs) at the interleukin 1A (IL1A) gene locus associated with endometriosis risk? SUMMARY ANSWER We found evidence for strong association between IL1A SNPs and endometriosis risk. WHAT IS KNOWN ALREADY Genetic factors contribute substantially to the complex aetiology of endometriosis and the disease has an estimated heritability of ∼51%. We, and others, have conducted genome-wide association (GWA) studies for endometriosis, which identified a total of nine independent risk loci. Recently, two small Japanese studies reported eight SNPs (rs6542095, rs11677416, rs3783550, rs3783525, rs3783553, rs2856836, rs1304037 and rs17561) at the IL1A gene locus as suggestively associated with endometriosis risk. There is also evidence of a link between inflammation and endometriosis. STUDY DESIGN, SIZE, DURATION We sought to further investigate the eight IL1A SNPs for association with endometriosis using an independent sample of 3908 endometriosis cases and 8568 controls of European and Japanese ancestry. The study was conducted between October 2013 and July 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS By leveraging GWA data from our previous multi-ethnic GWA meta-analysis for endometriosis, we imputed variants in the IL1A region, using a recent 1000 Genomes reference panel. After combining summary statistics for the eight SNPs from our European and Japanese imputed data with the published results, a fixed-effect meta-analysis was performed. An additional meta-analysis restricted to endometriosis cases with moderate-to-severe (revised American Fertility Society stage 3 or 4) disease versus controls was also performed. MAIN RESULTS AND THE ROLE OF CHANCE All eight IL1A SNPs successfully replicated at P < 0.014 in the European imputed data with concordant direction and similar size to the effects reported in the original Japanese studies. Of these, three SNPs (rs6542095, rs3783550 and rs3783525) also showed association with endometriosis at a nominal P < 0.05 in our independent Japanese sample. Fixed-effect meta-analysis of the eight SNPs for moderate-to-severe endometriosis produced a genome-wide significant association for rs6542095 (odds ratio = 1.21; 95% confidence interval = 1.13–1.29; P = 3.43 × 10−8). LIMITATIONS, REASONS FOR CAUTION The meta-analysis for moderate-to-severe endometriosis included results of moderate-to-severe endometriosis cases from our European data sets and all endometriosis cases from the Japanese data sets, as disease stage information was not available for endometriosis cases in the Japanese data sets. WIDER IMPLICATIONS OF THE FINDINGS SNP rs6542095 is located ∼2.3 kb downstream of the IL1A gene and ∼6.9 kb upstream of cytoskeleton-associated protein 2-like (CKAP2L) gene. The IL1A gene encodes the IL1a protein, a member of the interleukin 1 cytokine family which is involved in various immune responses and inflammatory processes. These results provide important replication in an independent Japanese sample and, for the first time, association of the IL1A locus in endometriosis patients of European ancestry. SNPs within the IL1A locus may regulate other genes, but if IL1A is the target, our results provide supporting evidence for a link between inflammatory responses and the pathogenesis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by grants from the Australian National Health and Medical Research Council and Wellcome Trust. None of the authors has competing interests for the study.
Resumo:
Objective: Human papillomavirus oncoproteins E6 and E7 down modulate Toll-like receptor (TLR) 9 expression in infected keratinocytes. We explored the status of expression and function of TLR7, TLR8, and TLR9 in primary human Langerhans cells (LCs) isolated from cervical tumors. Methodology: Single-cell suspensions were made from fresh tissues of squamous cell carcinoma (International Federation of Gynecology and Obstetrics stage IB2); myeloid dendritic cells were purified using CD1c magnetic activated cell separation kits. Langerhans cells were further flow sorted into CD1a(+)CD207(+) cells. Acute monocytic leukemia cell line THP-1-derived LCs (moLCs) formed the controls. mRNA from flow-sorted LCs was reverse transcribed to cDNA and TLR7, TLR8, and TLR9 amplified. Monocyte-derived Langerhans cells and cervical tumor LCs were stimulated with TLR7, TLR8, and TLR9 ligands. Culture supernatants were assayed for interleukin (IL) 1 beta, IL-6, IL-10, IL-12p70, interferon (IFN) alpha, interferon gamma, and tumor necrosis factor (TNF) alpha by Luminex multiplex bead array. Human papillomavirus was genotyped. Results: We have for the first time demonstrated that the acute monocytic leukemia cell line THP-1 can be differentiated into LCs in vitro. Although these moLCs. expressed all the 3 TLRs, tumor LCs expressed TLR7 and TLR8, but uniformly lacked TLR9. Also, moLCs secreted IL-6, IL-1 beta, and tumor necrosis factor alpha to TLR8 ligand and interferon alpha in response to TLR9 ligand; in contrast, tumor LCs did not express any cytokine to any of the 3 TLR ligands. Human papillomavirus type 16 was one of the common human papillomavirus types in all cases. Conclusions: Cervical tumor LCs lacked TLR9 expression and were functionally anergic to all the 3: TLR7, TLR8, and TLR9 ligands, which may play a crucial role in immune tolerance. The exact location of block(s) in TLR7 and TLR8 signaling needs to be investigated, which would have important immunotherapeutic implications.
Resumo:
Background: Implantation and growth of metastatic cancer cells at distant organs is promoted by inflammation-dependent mechanisms. A hepatic melanoma metastasis model where a majority of metastases are generated via interleukin-18-dependent mechanisms was used to test whether anti-inflammatory properties of resveratrol can interfere with mechanisms of metastasis. Methods: Two experimental treatment schedules were used: 1) Mice received one daily oral dose of 1 mg/kg resveratrol after cancer cell injection and the metastasis number and volume were determined on day 12. 2) Mice received one daily oral dose of 1 mg/kg resveratrol along the 5 days prior to the injection of cancer cells and both interleukin-18 (IL-18) concentration in the hepatic blood and microvascular retention of luciferase-transfected B16M cells were determined on the 18(th) hour. In vitro, primary cultured hepatic sinusoidal endothelial cells were treated with B16M-conditioned medium to mimic their in vivo activation by tumor-derived factors and the effect of resveratrol on IL-18 secretion, on vascular cell adhesion molecule-1 (VCAM-1) expression and on tumor cell adhesion were studied. The effect of resveratrol on melanoma cell activation by IL-18 was also studied. Results: Resveratrol remarkably inhibited hepatic retention and metastatic growth of melanoma cells by 50% and 75%, respectively. The mechanism involved IL-18 blockade at three levels: First, resveratrol prevented IL-18 augmentation in the blood of melanoma cell-infiltrated livers. Second, resveratrol inhibited IL-18-dependent expression of VCAM-1 by tumor-activated hepatic sinusoidal endothelium, preventing melanoma cell adhesion to the microvasculature. Third, resveratrol inhibited adhesion-and proliferation-stimulating effects of IL-18 on metastatic melanoma cells through hydrogen peroxide-dependent nuclear factor-kappaB translocation blockade on these cells. Conclusions: These results demonstrate multiple sites for therapeutic intervention using resveratrol within the prometastatic microenvironment generated by tumor-induced hepatic IL-18, and suggest a remarkable effect of resveratrol in the prevention of inflammation-dependent melanoma metastasis in the liver.
Resumo:
Five models for human interleukin-7 (HIL-7), HIL-9, HIL-13, HIL-15 and HIL-17 have been generated by SYBYL software package. The primary models were optimized using molecular dynamics and molecular mechanics methods. The final models were optimized using a steepest descent algorithm and a subsequent conjugate gradient method. The complexes with these interleukins and the common gamma chain of interleukin-2 receptor (IL-2R) were constructed and subjected to energy minimization. We found residues, such as Gln127 and Tyr103, of the common gamma chain of IL-2R are very important. Other residues, e.g. Lys70, Asn128 and Glu162, are also significant. Four hydrophobic grooves and two hydrophilic sites converge at the active site triad of the gamma chain. The binding sites of these interleukins interaction with the common gamma chain exist in the first helical and/or the fourth helical domains. Therefore, we conclude that these interleukins binds to the common gamma chain of IL-2R by the first and the fourth helix domain. Especially at the binding sites of some residues (lysine, arginine, asparagine, glutamic acid and aspartic acid), with a discontinuous region of the common gamma chain of IL-2R, termed the interleukins binding sites (103-210). The study of these sites can be important for the development of new drugs. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
BACKGROUND: Cytokines secreted by intestinal T lymphocytes probably play a critical role in regulation of the gut associated immune responses. AIMS: To quantify interferon gamma (IFN-gamma) and interleukin 4 (IL-4) secreting cells (SC) among human intraepithelial (IEL) and lamina propria (LPL) lymphocytes from the duodenum and right colon in non-pathological situations and in the absence of in vitro stimulation. PATIENTS: Duodenal and right colonic biopsy specimens were obtained from patients with no inflammation of the intestinal mucosa. METHODS: Intraepithelial and lamina propria cell suspensions were assayed for numbers of cells spontaneously secreting IFN-gamma and IL-4 by a two site reverse enzyme linked immunospot technique (ELISPOT). RESULTS: The relatively high proportion of duodenal lymphocytes spontaneously secreting IFN-gamma (IEL 3.6%; LPL 1.9%) and IL-4 (IEL 1.3%; LPL 0.7%) contrasted with the very low numbers of spontaneously IFN-gamma SC and the absence of spontaneously IL-4 SC among peripheral blood mononuclear cells. In the basal state, both IFN-gamma and IL-4 were mainly produced by CD4+ cells. Within the colon, only 0.2% of IEL and LPL secreted IFN-gamma in the basal state, and 0.1% secreted IL-4. CONCLUSIONS: Compared with peripheral lymphocytes substantial proportions of intestinal epithelial and lamina propria lymphocytes spontaneously secrete IFN-gamma and/or IL-4. These cytokines are probably involved in the normal homoeostasis of the human intestinal mucosa. Disturbances in their secretion could play a role in the pathogenesis of gastrointestinal diseases.