970 resultados para Interleukin-2 neutralization monoclonal antibody
Resumo:
Background: Gout patients initiating urate lowering therapy have an increased risk of flares. Inflammation in gouty arthritis is induced by IL-1b. Canakinumab targets and inhibits IL-1b effectively in clinical studies. This study compared different doses of canakinumab vs colchicine in preventing flares in gout patients initiating allopurinol therapy.Methods: In this 24 week double blind study, gout patients (20-79 years) initiating allopurinol were randomized (1:1:1:1:1:1:2) to canakinumab s.c. single doses of 25, 50, 100, 200, 300 mg, or 150 mg divided in doses every 4 weeks (50+50+25+25 mg [q4wk]) or colchicine 0.5 mg p.o. daily for 16 weeks. Primary outcome was to determine the canakinumab dose giving comparable efficacy to colchicine with respect to the number of gout flares occurring during first 16 weeks. Secondary outcomes included number of patients with gout flares and C-reactive protein (CRP) levels during the first 16 weeks.Results: 432 patients were randomized and 391 (91%) completed the study. All canakinumab doses were better than colchicine in preventing flares and therefore, a canakinumab dose comparable to colchicine could not be determined. Based on a negative binomial model, all canakinumab groups, except 25 mg, reduced the flare rate ratio per patient significantly compared to colchicine group (rate ratio estimates 25 mg 0.60, 50 mg 0.34, 100 mg 0.28, 200 mg 0.37, 300 mg 0.29, q4wk 0.38; p<=0.05). The percentage of patients with flares was lower for all canakinumab groups (25 mg 27.3%, 50 mg 16.7%, 100 mg 14.8%, 200 mg 18.5%, 300 mg 15.1%, q4wk 16.7%) compared to colchicine group (44.4%). All patients taking canakinumab were significantly less likely to experience at least one gout flare than patients taking colchicine (odds ratio range [0.22 - 0.47]; p<=0.05 for all). The median baseline CRP levels were 2.86 mg/L for 25 mg, 3.42 mg/L for 50 mg, 1.76 mg/L for 100 mg, 3.66 mg/L for 200 mg, 3.21 mg/L for 300 mg, 3.23 mg/L for q4wk canakinumab groups and 2.69 mg/L for colchicine group. In all canakinumab groups with median CRP levels above the normal range at baseline, median levels declined within 15 days of treatment and were maintained at normal levels (ULN=3 mg/L) throughout the 16 week period. Adverse events (AEs) occurred in 52.7% (25 mg), 55.6% (50 mg), 51.9% (100 mg), 51.9% (200 mg), 54.7% (300 mg), and 58.5% (q4wk) of patients on canakinumab vs 53.7% of patients on colchicine. Serious AEs (SAE) were reported in 2 (3.6%; 25 mg), 2 (3.7%, 50 mg), 3 (5.6%, 100 mg), 3 (5.6%, 200 mg), 3 (5.7%, 300 mg) and 1 (1.9%, q4wk) patients on canakinumab and in 5 (4.6%) patients on colchicine. One fatal SAE (myocardial infarction, not related to study drug) occurred in colchicine group.Conclusion: In this large randomized, double-blind active controlled study of flare prevention in gout patients initiating allopurinol therapy, treatment with canakinumab led to a statistically significant reduction in flares compared with colchicine (standard of care), and was well tolerated.
Resumo:
Background: Gout patients initiating urate lowering therapy have an increased risk of flares. Inflammation in gouty arthritis is induced by IL-1b. Canakinumab targets and inhibits IL-1b effectively in clinical studies. This study compared different doses of canakinumab vs colchicine in preventing flares in gout patients initiating allopurinol therapy.Methods: In this 24 week double blind study, gout patients (20-79 years) initiating allopurinol were randomized (1:1:1:1:1:1:2) to canakinumab s.c. single doses of 25, 50, 100, 200, 300 mg, or 150 mg divided in doses every 4 weeks (50+50+25+25 mg [q4wk]) or colchicine 0.5 mg p.o. daily for 16 weeks. Primary outcome was to determine the canakinumab dose giving comparable efficacy to colchicine with respect to the number of gout flares occurring during first 16 weeks. Secondary outcomes included number of patients with gout flares and C-reactive protein (CRP) levels during the first 16 weeks.Results: 432 patients were randomized and 391 (91%) completed the study. All canakinumab doses were better than colchicine in preventing flares and therefore, a canakinumab dose comparable to colchicine could not be determined. Based on a negative binomial model, all canakinumab groups, except 25 mg, reduced the flare rate ratio per patient significantly compared to colchicine group (rate ratio estimates 25 mg 0.60, 50 mg 0.34, 100 mg 0.28, 200 mg 0.37, 300 mg 0.29, q4wk 0.38; p<=0.05). The percentage of patients with flares was lower for all canakinumab groups (25 mg 27.3%, 50 mg 16.7%, 100 mg 14.8%, 200 mg 18.5%, 300 mg 15.1%, q4wk 16.7%) compared to colchicine group (44.4%). All patients taking canakinumab were significantly less likely to experience at least one gout flare than patients taking colchicine (odds ratio range [0.22 - 0.47]; p<=0.05 for all). The median baseline CRP levels were 2.86 mg/L for 25 mg, 3.42 mg/L for 50 mg, 1.76 mg/L for 100 mg, 3.66 mg/L for 200 mg, 3.21 mg/L for 300 mg, 3.23 mg/L for q4wk canakinumab groups and 2.69 mg/L for colchicine group. In all canakinumab groups with median CRP levels above the normal range at baseline, median levels declined within 15 days of treatment and were maintained at normal levels (ULN=3 mg/L) throughout the 16 week period. Adverse events (AEs) occurred in 52.7% (25 mg), 55.6% (50 mg), 51.9% (100 mg), 51.9% (200 mg), 54.7% (300 mg), and 58.5% (q4wk) of patients on canakinumab vs 53.7% of patients on colchicine. Serious AEs (SAE) were reported in 2 (3.6%; 25 mg), 2 (3.7%, 50 mg), 3 (5.6%, 100 mg), 3 (5.6%, 200 mg), 3 (5.7%, 300 mg) and 1 (1.9%, q4wk) patients on canakinumab and in 5 (4.6%) patients on colchicine. One fatal SAE (myocardial infarction, not related to study drug) occurred in colchicine group.Conclusion: In this large randomized, double-blind active controlled study of flare prevention in gout patients initiating allopurinol therapy, treatment with canakinumab led to a statistically significant reduction in flares compared with colchicine (standard of care), and was well tolerated.
Resumo:
Prompt and accurate detection of rejection prior to pathological changes after organ transplantation is vital for monitoring rejections. Although biopsy remains the current gold standard for rejection diagnosis, it is an invasive method and cannot be repeated daily. Thus, noninvasive monitoring methods are needed. In this study, by introducing an IL-2 neutralizing monoclonal antibody (IL-2 N-mAb) and immunosuppressants into the culture with the presence of specific stimulators and activated lymphocytes, an activated lymphocyte-specific assay (ALSA) system was established to detect the specific activated lymphocytes. This assay demonstrated that the suppression in the ALSA test was closely related to the existence of specific activated lymphocytes. The ALSA test was applied to 47 heart graft recipients and the proliferation of activated lymphocytes from all rejection recipients proven by endomyocardial biopsies was found to be inhibited by spleen cells from the corresponding donors, suggesting that this suppression could reflect the existence of activated lymphocytes against donor antigens, and thus the rejection of a heart graft. The sensitivity of the ALSA test in these 47 heart graft recipients was 100%; however, the specificity was only 37.5%. It was also demonstrated that IL-2 N-mAb was indispensible, and the proper culture time courses and concentrations of stimulators were essential for the ALSA test. This preliminary study with 47 grafts revealed that the ALSA test was a promising noninvasive tool, which could be used in vitro to assist with the diagnosis of rejection post-heart transplantation.
Resumo:
Theoretically, serological assays with affinity purified marker antigens can allow strain-specific diagnosis even when parasites cannot be retrieved from and infected host. A Trypanosoma cruzi antigen was purified by affinity chromatography using a zymodeme (Z) 2 specific monoclonal antibody (2E2C11). An indirect enzyme-linked immunosorbent assay (ELISA) based on the purified antigen could discriminate between sera from rabbits immunized with T. cruzi zymodeme clones but could not discriminate between sera from mice infected with different zymodemes.
Resumo:
The biological activity of interleukin (IL)-2 and other cytokines in vivo can be augmented by binding to certain anti-cytokine monoclonal antibodies (mAb). Here, we review evidence on how IL-2/anti-IL-2 mAb complexes can be used to cause selective stimulation and expansion of certain T-cell subsets. With some anti-IL-2 mAbs, injection of IL-2/mAb complexes leads to expansion of CD8 T effector cells but not CD4 T regulatory cells (Tregs); these complexes exert less adverse side effects than soluble IL-2 and display powerful antitumor activity. Other IL-2/mAb complexes have minimal effects on CD8 T cells but cause marked expansion of Tregs. Preconditioning mice with these complexes leads to permanent acceptance of MHC-disparate pancreatic islets in the absence of immunosuppression.
Resumo:
The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology.
Resumo:
Experimental studies in nude mice with human colon-carcinoma grafts demonstrated the therapeutic efficiency of F(ab')2 fragments to carcinoembryonic antigen (CEA) labeled with a high dose of 131Iodine. A phase I/II study was designed to determine the maximum tolerated dose of 131I-labeled F(ab')2 fragments (131I-F(ab')2) from anti-CEA monoclonal antibody F6, its limiting organ toxicity and tumor uptake. Ten patients with non-resectable liver metastases from colorectal cancer (9 detected by CT scan and 1 by laparotomy) were treated with 131I-F(ab')2, doses ranging from 87 mCi to 300 mCi for the first 5 patients, with a constant 300-mCi dose for the last 5 patients. For all the patients, autologous bone marrow was harvested and stored before treatment. Circulating CEA ranged from 2 to 126 ng/ml. No severe adverse events were observed during or immediately following infusion of therapeutic doses. The 9 patients with radiologic evidence of liver metastases showed uptake of 131I-F(ab')2 in the metastases, as observed by single-photon-emission tomography. The only toxicity was hematologic, and no severe aplasia was observed when up to 250 mCi was infused. At the 300-mCi dose, 5 out of 6 patients presented grade-3 or -4 hematologic toxicity, with a nadir for neutrophils and thrombocytes ranging from 25 to 35 days after infusion. In these 5 cases, bone marrow was re-infused. No clinical complications were observed during aplasia. The tumor response could be evaluated in 9 out of 10 patients. One patient showed a partial response of one small liver metastasis (2 cm in diameter) and a stable evolution of the other metastases, 2 patients had stable disease, and 6 showed tumor progression at the time of evaluation (2 or 3 months after injection) by CT scan. This phase-I/II study demonstrated that a dose of 300 mCi of 131I-F(ab')2 from the anti-CEA Mab F6 is well tolerated with bone-marrow rescue, whereas a dose of 200 mCi can be infused without severe bone-marrow toxicity.
Resumo:
PURPOSE: To evaluate the feasibility of radioimmunotherapy (RIT) with radiolabeled anti-carcinoembryonic antigen antibodies after complete resection of liver metastases (LM) from colorectal cancer. Patients and Methods: Twenty-two patients planned for surgery of one to four LM received a preoperative diagnostic dose of a 131I-F(ab')2-labeled anti-carcinoembryonic antigen monoclonal antibody F6 (8-10 mCi/5 mg). 131I-F(ab')2 uptake was analyzed using direct radioactivity counting, and tumor-to-normal liver ratios were recorded. Ten patients with tumor-to-normal liver ratios of >5 and three others were treated with a therapeutic injection [180-200 mCi 131I/50 mg F(ab')2] 30 to 64 days after surgery. RESULTS: Median 131I-F(ab')2 immunoreactivity in patient serum remained at 91% of initial values for up to 96 hours after injection. The main and dose-limiting-toxicity was hematologic, with 92% and 85% grades 3 to 4 neutropenia and thrombocytopenia, respectively. Complete spontaneous recovery occurred in all patients. No human anti-mouse antibody response was observed after the diagnosis dose; however, 10 of the 13 treated patients developed human anti-mouse antibody approximately 3 months later. Two treated patients presented extrahepatic metastases at the time of RIT (one bone and one abdominal node) and two relapsed within 3 months of RIT (one in the lung and the other in the liver). Two patients are still alive, and one of these is disease-free at 93 months after resection. At a median follow-up of 127 months, the median disease-free survival is 12 months and the median overall survival is 50 months. CONCLUSION: RIT is feasible in an adjuvant setting after complete resection of LM from colorectal cancer and should be considered for future trials, possibly in combination with chemotherapy, because of the generally poor prognosis of these patients.
Resumo:
Broadly neutralizing antibodies reactive against most and even all variants of the same viral species have been described for influenza and HIV-1 (ref. 1). However, whether a neutralizing antibody could have the breadth of range to target different viral species was unknown. Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are common pathogens that cause severe disease in premature newborns, hospitalized children and immune-compromised patients, and play a role in asthma exacerbations. Although antisera generated against either HRSV or HMPV are not cross-neutralizing, we speculated that, because of the repeated exposure to these viruses, cross-neutralizing antibodies may be selected in some individuals. Here we describe a human monoclonal antibody (MPE8) that potently cross-neutralizes HRSV and HMPV as well as two animal paramyxoviruses: bovine RSV (BRSV) and pneumonia virus of mice (PVM). In its germline configuration, MPE8 is HRSV-specific and its breadth is achieved by somatic mutations in the light chain variable region. MPE8 did not result in the selection of viral escape mutants that evaded antibody targeting and showed potent prophylactic efficacy in animal models of HRSV and HMPV infection, as well as prophylactic and therapeutic efficacy in the more relevant model of lethal PVM infection. The core epitope of MPE8 was mapped on two highly conserved anti-parallel β-strands on the pre-fusion viral F protein, which are rearranged in the post-fusion F protein conformation. Twenty-six out of the thirty HRSV-specific neutralizing antibodies isolated were also found to be specific for the pre-fusion F protein. Taken together, these results indicate that MPE8 might be used for the prophylaxis and therapy of severe HRSV and HMPV infections and identify the pre-fusion F protein as a candidate HRSV vaccine.
Resumo:
In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.
Resumo:
Antibody-based therapies for cancer rely on the expression of defined antigens on neoplastic cells. However, most tumors display heterogeneity in the expression of such antigens. We demonstrate here that antibody-targeted interleukin 2 delivery overcomes this problem by induction of a host immune response. Immunohistochemical analysis demonstrated that the antibody-interleukin 2 fusion protein-induced eradication of established tumors is mediated by host immune cells, particularly CD8+ T cells. Because of this cellular immune response, antibody-directed interleukin 2 therapy is capable to address established metastases displaying substantial heterogeneity in expression of the targeted antigen. This effector mechanism further enables the induction of partial regressions of large subcutaneous tumors that exceeded more than 5% of the body weight. These observations indicate that antibody-directed cytokine delivery offers an effective new tool for cancer therapy.
Resumo:
Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.
Resumo:
Interleukin 2 (IL-2)-deficient (IL-2-/-) mice develop hemolytic anemia and chronic inflammatory bowel disease. Importantly, the induction of disease in IL-2-deficient mice is critically dependent on CD4+ T cells. We have studied the requirements of T cells from IL-2-deficient mice for costimulation with B7 antigens. Stable B7-1 or B7-2 chinese hamster ovary (CHO) cell transfectants could synergize with anti-CD3 monoclonal antibody (mAb) to induce the proliferation of CD4+ T cells from IL-2-/- mutant mice. Further mechanistic studies established that B7-induced activation resulted in surface expression of the alpha chain of the IL-2 receptor. B7-induced proliferation occurred independently of IL-4 and was largely independent of the common gamma chain of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. Finally, anti-B7-2 but not anti-B7-1 mAb was able to inhibit the activation of IL-2-/- T cells induced by anti-CD3 mAb in the presence of syngeneic antigen-presenting cells. The results of our experiments indicate that IL-2-/- CD4+ T cells remain responsive to B7 stimulation and raise the possibility that B7 antagonists have a role in the prevention/treatment of inflammatory bowel disease.