991 resultados para Interleukin-17
Resumo:
Objective Ankylosing spondylitis (AS) is a common inflammatory arthritis affecting primarily the axial skeleton. IL23R is genetically associated with AS. This study was undertaken to investigate and characterize the role of interleukin-23 (IL-23) signaling in AS pathogenesis. Methods The study population consisted of patients with active AS (n = 17), patients with psoriatic arthritis (n = 8), patients with rheumatoid arthritis, (n = 9), and healthy subjects (n = 20). IL-23 receptor (IL-23R) expression in T cells was determined in each subject group, and expression levels were compared. Results The proportion of IL-23R-expressing T cells in the periphery was 2-fold higher in AS patients than in healthy controls, specifically driven by a 3-fold increase in IL-23R-positive γ/δ T cells in AS patients. The proportions of CD4+ and CD8+ cells that were positive for IL-17 were unchanged. This increased IL-23R expression on γ/δ T cells was also associated with enhanced IL-17 secretion, with no observable IL-17 production from IL-23R-negative γ/δ T cells in AS patients. Furthermore, γ/δ T cells from AS patients were heavily skewed toward IL-17 production in response to stimulation with IL-23 and/or anti-CD3/CD28. Conclusion Recently, mouse models have shown IL-17-secreting γ/δ T cells to be pathogenic in infection and autoimmunity. Our data provide the first description of a potentially pathogenic role of these cells in a human autoimmune disease. Since IL-23 is a maturation and growth factor for IL-17-producing cells, increased IL-23R expression may regulate the function of this putative pathogenic γ/δ T cell population.
Resumo:
Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Interleukin (IL)-17 signaling has been implicated in lung and skin fibrosis. We examined the role of IL-17 signaling in the pathogenesis of liver fibrosis in mice.
Resumo:
Objective: The study was performed to investigate the association of interleukin 17 (IL 17) or angiotensin II (Ang II) with refractory hypertension risk in hemodialysis patients. Methods: Ninety hemodialysis patients were enrolled into this study, and those with hypertension were divided into two groups. The Easy-to-Control Hypertension group (ECHG) had fifty patients, while the refractory hypertension group (RHG) had forty patients. Twenty healthy individuals were recruited as the control group. IL17 and Ang II were determined using a human IL 17 / Ang II enzyme-linked immunosorbent assay kit. Serum IL 17 and Ang II concentrations in RHG patients were higher than those in ECHG patients. Results: Serum IL 17 and Ang II concentrations in both patient groups were higher than those in the control group. Linear regression analysis showed a positive correlation between IL 17 and Ang II. In multivariate regression analysis, we found that IL17 and Ang II were associated with refractory hypertension risk in hemodialysis patients. Conclusion: IL17 and Ang II were associated with refractory hypertension risk in hemodialysis patients. There was also a positive correlation between IL 17and Ang II.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
The proinflammatory cytokine IL-17 has an important role in pathogenesis of several inflammatory diseases. In immune-mediated joint diseases, IL-17 can induce secretion of other proinflammatory cytokines such as IL-1, IL-6 and TNF, as well as matrix metalloproteinase enzymes, leading to inflammation, cartilage breakdown, osteoclastogenesis and bone erosion. In animal models of inflammatory arthritis, mice deficient in IL-17 are less susceptible to development of disease. The list of IL-17-secreting cells is rapidly growing, and mast cells have been suggested to be a dominant source of IL-17 in inflammatory joint disease. However, many other innate sources of IL-17 have been described in both inflammatory and autoinflammatory conditions, raising questions as to the role of mast cells in orchestrating joint inflammation. This article will critically assess the contribution of mast cells and other cell types to IL-17 production in the inflammatory milieu associated with inflammatory arthritis, understanding of which could facilitate targeted therapeutic approaches. © 2013 Macmillan Publishers Limited. All rights reserved.
Resumo:
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Resumo:
Les glucocorticoïdes sont les médicaments les plus efficaces pour le contrôle de l'obstruction respiratoire chez les chevaux atteints du souffle, et de l'asthme humain. Toutefois, les neutrophiles persistent dans les voies respiratoires suite à ce traitement. Nous avons précédemment rapporté que les neutrophiles sanguins humains et équins sont sensibles à l'action des glucocorticoïdes. Comme elle contribue à l'insensibilité des cellules épithéliales pulmonaires humaines aux glucocorticoïdes, nous avons émis l'hypothèse que l'IL-17 a un effet similaire sur les neutrophiles et qu’elle contribue à leur persistance dans les voies respiratoires asthmatiques. Objectifs : Évaluer 1. L’expression des deux sous-unités du récepteur de l’IL-17 (l'IL-17RA/IL-17RC) chez les neutrophiles équins hautement purifiés. 2. Si l'IL-17 active directement les neutrophiles et si cette réponse est sensible à l'action des glucocorticoïdes. 3. L'effet de l'IL-17 sur la viabilité et l'apoptose des neutrophiles. Résultats: 1. Les neutrophiles expriment l’IL-17RA/IL-17RC aux niveaux translationnel et protéique. 2. L’IL-17 induit une activation sélective des neutrophiles (surrégulation de l’IL-8), qui n’est pas atténuée par dexaméthasone et 3. l’IL-17 augmente la viabilité des neutrophiles stimulés (LPS) par une diminution de l'apoptose. Nos résultats indiquent que l'IL-17 active directement le neutrophile équin, et que l’augmentation de l’IL-8 (puissant chimioatractant des neutrophiles) qui en résulte n’est pas contrôlée par la dexaméthasone. L'IL-17 pourrait aussi contribuer à la persistance de neutrophiles dans les voies respiratoires chez les chevaux atteints du souffle, en diminuant l'apoptose.
Resumo:
L'arthrose est une maladie multifactorielle complexe. Parmi les facteurs impliqués dans sa pathogénie, les certains prostaglandines exercent un rôle inflammatoire et d’autres un rôle protecteur. La prostaglandine D2 (PGD2) est bien connue comme une PG anti-inflammatoire, qui est régulée par l’enzyme «Lipocalin prostaglandine D-synthase». Avec l’inflammation de l'arthrose, les chondrocytes essaient de protéger le cartilage en activant certaines voies de récupération dont l'induction du gène L-PGDS. Dans cette étude, nous étudions la voie de signalisation impliquée dans la régulation de l'expression du (L-PGDS) sur les chondrocytes traités avec différents médiateurs inflammatoires. Le but de projet: Nous souhaitons étudier la régulation de la L-PGDS dans le but de concevoir des approches thérapeutiques qui peuvent activer la voie intrinsèque anti-inflammatoire. Méthode et conclusions: In vivo, l'arthrose a été suivie en fonction de l’âge chez la souris ou chirurgicalement suivant une intervention au niveau des genoux de souris. Nous avons confirmé les niveaux d’expression de L-PGDS histologiquement et par immunohistochimie. In vitro, dans les chondrocytes humains qui ont été traités avec différents médiateurs de l'inflammation, nous avons observé une augmentation de l’expression de la L-PGDS dose et temps dépendante. Nous avons montré, in vivo et in vitro que l’inflammation induit une sécrétion chondrocytaire de la L-PGDS dans le milieu extracellulaire. Enfin, nous avons observé la production de différentes isoformes de la L-PGDS en réponse à l'inflammation.
Resumo:
Th17 cells have been strongly associated to the pathogenesis of inflammatory and autoimmune diseases, although their influence on the carcinogenesis is still little known, there are reports of anti-tumor and protumoral actions. The objective of this study is to research the presence of Th17 lineage in lip and tongue SCC, using the analysis of the immunoexpression of IL-17 and RORγt, relating this immunoexpression with clinical and morphological findings in the attempt to better comprehend the role of these cells on the tumoral immunity of OSCCs. The results were submitted to non-parametric statistical tests with significance level of 5%. On the histomorphological analysis, it was observed the predominance of low level lesions on lip and high level lesions on tongue (p=0,024). It was not observed statistical significance between clinical stage and histological gradation of malignancy (p=0,644). For the immunohistochemical study, 5 random fields with greater immunoreactivity of the peritumoral inflammatory infiltrate were photomicrographed on the 400x magnification. It was done the count of lymphocytes which showed cytoplasmic and pericytoplasmic staining for the IL-17 cytokine as well as nuclear and cytoplasmic staining for RORγt. It was observed statistical significance difference on the quantity of immunopositive lymphocytes to IL-17 between the groups of SCC of lip and tongue (p=0,028). For the RORγt it was not observed statistical significance difference between the groups of SCC of lip and tongue (p=0,915). It was not observed statistical difference between the immunostaining of IL-17 and RORγt with histological gradation of malignancy and clinical staging. The findings of this research suggest a possible anti-tumor role of IL-17 for cases of lip. The results of the analysis of the RORγt are possibly due to the wide duality of the anti-tumor and protumoral role of the Th17 cells and their plasticity which, in the presence of different cytokines expressed on the tumor microenvironment, can alter its phenotype.
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is an artificially induced demyelination of the central nervous system (CNS) that resembles multiple sclerosis in its clinical, histopathological, and immunological features. Activated Th1 and Th17 cells are thought to be the main immunological players during EAE development. This study was designed to evaluate peripheral and local contribution of IL-17 to acute and chronic EAE stages. C57BL/6 mice were immunized with MOG plus complete Freund's adjuvant followed by pertussis toxin. Mice presented an initial acute phase characterized by accentuated weight loss and high clinical score, followed by a partial recovery when the animals reached normal body weight and smaller clinical scores. Spleen cells stimulated with MOG produced significantly higher levels of IFN-γ during the acute period whereas similar IL-17 levels were produced during both disease stages. CNS-infiltrating cells stimulated with MOG produced similar amounts of IFN-γ but, IL-17 was produced only at the acute phase of EAE. The percentage of Foxp3+ Treg cells, at the spleen and CNS, was elevated during both phases. The degree of inflammation was similar at both disease stages. Partial clinical recovery observed during chronic EAE was associated with no IL-17 production and presence of Foxp3+ Treg cells in the CNS. © 2013 Sofia Fernanda Gonçalves Zorzella-Pezavento et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)