837 resultados para Interlayer distance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excess intercalation of cationic surfactants into Na-montmorillonites (MMTs) was investigated in organically modified silicates (OMSs), synthesized with MMTs and octadecylammonium chloride (OAC) by systematically varying the surfactant loading level from 0.625 to 1, 1.25, 1.56, 2, and 2.5 with respect to the cation exchange capacity (CEC) of MMTs. Wide-angle X-ray diffraction and thermogravimetric analysis results indicated that the continuous increase of interlayer distances came from the entering of surfactants into the interlayer of MMTs. Excess surfactants were extracted with a Soxhlet apparatus, which showed two kinds of intercalation states of surfactants in the interlayer when the surfactant loading level was beyond the CEC. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to explore the microstructures of OMSs. It was found that the surfactants arranged more orderly as the loading level increased and the excess surfactants piled up in the interlayer together with counterions, forming a sandwiched surfactant layer. On the basis of the results, the layer structures of OMSs and the mechanism by which the surfactants entered the interlayer were expounded: surfactant cations entered the interlayer through cation exchange reactions and were tightly attracted to the silicate platelet surfaces when the surfactant loading level was below the CEC;

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The system TlCo2Se2-xSx has been thoroughly investigated by neutron powder diffraction and SQUID magnetometry. TlCo2Se2-xSx is a layered tetragonal structure containing atomic cobalt layers separated by a distance of 6.4 angstrom in the sulphide and 6.8 angstrom in the selenide. The solid solubility of isovalent selenium and sulphur atoms in the structure makes it possible to continuously vary the interlayer distance and thereby tune the magnetic coupling between the Co-layers. At low temperatures, the Co-atoms are ferromagnetically ordered within the layers and magnetic moments lie in the ab-plane. However, these Co-moments form a helical magnetic structure that prevails for 0 <= x <= 1.5 with a gradual decrease of the angle between adjacent Co-layers from 122 degrees to 39 degrees. For x >= 1.75, a collinear ferromagnetic structure is stable. The relationship between the coupling angle and the Co-interlayer separation shows an almost linear behaviour. The helical phase contains no net spontaneous magnetic moment up to TlCo2SeS, where a small net magnetic moment appears that increases until the ferromagnetic structure is found for 1.75 <= x <= 2.0. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, 75 °C) to determine the effect on the thermal stability of the hydrotalcite structure, and to identify other precipitates that form at these temperatures. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; 1) Bayer hydrotalcite, 2), calcium carbonate species, and 3) hydromagnesite. The DTG curve can be separated into four decomposition steps; 1) the removal of adsorbed water and free interlayer water in hydrotalcite (30 – 230 °C), 2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250 – 400 °C), 3) the decarbonation of hydromagnesite (400 – 550 °C), and 4) the decarbonation of aragonite (550 – 650 °C).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineral reevesite and the cobalt substituted reevesite have been synthesised. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. The stability of the reevesite and cobalt doped reevesite was determined by thermogravimetric analysis. The maximum temperature of the reevesite occurs for the unsubstituted reevesite and is around 220°C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that when a soft polymer like Poly(3-hexyl-thiophene) wraps multiwall nanotubes by coiling around the main axis, a localized deformation of the nanotube structure is observed. High resolution transmission electron microscopy shows that radial compressions of about 4% can take place, and could possibly lead to larger interlayer distance between the nanotube inner walls and reduce the innermost nanotube radius. The mechanical stress due to the polymer presence was confirmed by Raman spectroscopic observation of a gradual upshift of the carbon nanotube G-band when the polymer content in the composites was progressively increased. Vibrational spectroscopy also indicates that charge transfer from the polymer to the nanotubes is responsible for a peak frequency relative downshift for high P3HT-content samples. Continuously acquired transmission electron microscopy images at rising temperature show the MWCNT elastic compression and relaxation due to polymer rearrangement on the nanotube surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have successfully synthesized hydrotalcites (HTs) contg. calcium, which are naturally occurring minerals. Insight into the unique structure of HTs has been obtained using a combination of X-ray diffraction (XRD) as well as IR and Raman spectroscopies. Calcium-contg. hydrotalcites (Ca-HTs) of the formula Ca4Al2(CO3)(OH)12·4H2O (2:1 Ca-HT) to Ca8Al2(CO3)(OH)20· 4H2O (4:1 Ca-HT) have been successfully synthesized and characterised by XRD and Raman spectroscopy. XRD has shown that 3:1 calcium HTs have the largest interlayer distance. Raman spectroscopy complemented with selected IR data has been used to characterize the synthesized Ca-HTs. The Raman bands obsd. at around 1086 and 1077 cm-1 were attributed to the ν1 sym. stretching modes of the (CO32-) units of calcite and carbonate intercalated into the HT interlayer. The corresponding ν3 CO32- antisym. stretching modes are found at around 1410 and 1475 cm-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seawater neutralisation process is currently used in the Alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues, through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralisation method is very similar to the co-precipitation method used to synthesise hydrotalcite (Mg6Al2(OH)16CO3•4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralisation process of Bayer liquor. The Bayer precipitates have been characterised by a variety of techniques, including X-ray diffraction, Raman spectroscopy and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. XRD determined that Bayer hydrotalcites that are synthesised at 55 °C have a larger interlayer distance, indicating more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 °C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intercalation of an anionic surfactant, sodium dodecylsulfate (SDS), into hydrocalumite (CaAl-LDH-Cl) was investigated in this study. To understand the intercalation behavior, X-ray diffraction (XRD), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR) and scanning electron microscopy (SEM) were undertaken. The near-infrared spectra indicated a special spectral range from 6000 to 5600cm-1and prominent bands of CaAl-LDH-Cl intercalated with SDS around 8388cm-1. This band was assigned to the second overtone of the first fundamental of CH stretching vibrations of SDS, and it could be used to determinate the result of CaAl-LDH-Cl modified by SDS. Moreover, the results revealed that different adsorption behaviors were observed at different (high and low) concentrations of SDS. When the SDS concentration was around 0.2molL-1, anion exchange intercalation occurred and the interlayer distance expanded to about 3.25nm. When SDS concentration was 0.005molL-1, the surface adsorption of DS- was the major anion exchange event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inorganic–organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4 (OH)24(H2O)12]7+ or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intercalation of linear alkylamines (C1-C4) in the two-dimensional (2D) Ising antiferromagnet, FePS3, has been investigated. Intercalation proceeds with a dilation of the interlayer distance. The expansion (approximately 3.8 angstrom) is the same for all four amine molecules, suggesting that they are oriented flat with respect to the layers. From an analysis of the products of deintercalation, it is concluded that the intercalated species are the alkylammonium cations and neutral amine molecules. The intercalated compounds are highly moisture sensitive, as reflected in the chemical nature of the intercalated species. Charge neutrality of the lattice after intercalation is preserved by the loss of Fe2+ ions from the lattice. These Fe2+ ions are further oxidized to form superparamagnetic Fe2O3 clusters, as confirmed by Mossbauer spectra and magnetic measurements. This was further corroborated by in situ EPR studies. The Fe-57 Mossbauer spectra of the intercalated compounds showed evidence for two species other than Fe2O3. On the basis of the observed isomer shifts and quadrupole splittings, they have been assigned to Fe2+ in an environment similar to that in FePS3 and in a distorted FePS3 environment. The temperature and field dependence of the magnetic susceptibility of single crystals of the amine-intercalated FePS3 have been measured. Their magnetic behavior shows many of the features expected of a 2D Ising antiferromagnet with random defects, Fe1-xPS3, in agreement with the mechanism of intercalation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Layers of graphene oxide (GO) are found to be good for the permeation of water but not for helium (Science, 2012, 335(6067), 442-444) suggesting that the GO layers are dynamic in the formation of a permeation route depending on the environment they are in (i.e., water or helium). To probe the microscopic origin of this observation we calculate the potential of mean force (PMF) of GO sheets (with oxidized and reduced parts), with the inter-planar distance as a reaction coordinate in helium and water. Our PMF calculation shows that the equilibrium interlayer distance between the oxidized part of the GO sheets in helium is at 4.8 angstrom leaving no space for helium permeation. In contrast, the PMF of the oxidized part of the GO in water shows two minima, one at 4.8 angstrom and another at 6.8 angstrom, corresponding to no water and a water filled region, thus giving rise to a permeation path. The increased electrostatic interaction between water with the oxidized part of the sheet helps the sheet open up and pushes water inside. Based on the entropy calculations for water trapped between graphene sheets and oxidized graphene sheets at different inter-sheet spacings, we also show the thermodynamics of filling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is focused on the factors influencing the intercalation of maleated polypropylene (PPMA) into organically modified montmorillonite (OMMT). Two kinds of PPMA were used to explore the optimal candidate for effective intercalation into OMMT. The grafting degree of maleic anhydride and the viscosity of PPMA have effects on the diffusion of polymer molecules. Moreover, the loading level of surfactant was varied to optimize the modification of montmorillonite because the appropriate loading level can provide a balance between interlayer distance and steric hindrance. The kind of surfactant changes the interaction between OMMT and PPMA, and accordingly the intercalation of PPMA is different, resulting in the discrepancy of the intercalation of PPMA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the observation of urchin-like nanostructures consisting of high-density spherical nanotube radial arrays of vanadium oxide nanocomposite, successfully synthesized by a simple chemical route using an ethanolic solution of vanadium tri-isopropoxide and alkyl amine hexadecylamine for 7 days at 180oC. The results show that the growth process of the NanoUrchin occurs in stages, starting with a radial self-organized arrangement of lamina followed by the rolling of the lamina into nanotubes. The longest nanotubes are measured to be several micrometers in length with diameters of ~120 nm and hollow centers typically measured to be ~75 nm. The NanoUrchin have an estimated density of nanotubes of ~40 sr-1. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. The interlayer distance is measured to be 2.9 ± 0.1 nm and electron diffraction identified the vanadate phase in the VOx nanocomposite as orthorhombic V2O5. These nanostructures may be used as three-dimensional composite materials and as supports for other materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.