995 resultados para Interior point


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The n-interior-point variant of the Erdos Szekeres problem is the following: for every n, n >= 1, does there exist a g(n) such that every point set in the plane with at least g(n) interior points has a convex polygon containing exactly n interior points. The existence of g(n) has been proved only for n <= 3. In this paper, we show that for any fixed r >= 2, and for every n >= 5, every point set having sufficiently large number of interior points and at most r convex layers contains a subset with exactly n interior points. We also consider a relaxation of the notion of convex polygons and show that for every n, n >= 1, any point set with at least n interior points has an almost convex polygon (a simple polygon with at most one concave vertex) that contains exactly n interior points. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ultra Weak Variational Formulation (UWVF) is a powerful numerical method for the approximation of acoustic, elastic and electromagnetic waves in the time-harmonic regime. The use of Trefftz-type basis functions incorporates the known wave-like behaviour of the solution in the discrete space, allowing large reductions in the required number of degrees of freedom for a given accuracy, when compared to standard finite element methods. However, the UWVF is not well disposed to the accurate approximation of singular sources in the interior of the computational domain. We propose an adjustment to the UWVF for seismic imaging applications, which we call the Source Extraction UWVF. Differing fields are solved for in subdomains around the source, and matched on the inter-domain boundaries. Numerical results are presented for a domain of constant wavenumber and for a domain of varying sound speed in a model used for seismic imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, short term hydroelectric scheduling is formulated as a network flow optimization model and solved by interior point methods. The primal-dual and predictor-corrector versions of such interior point methods are developed and the resulting matrix structure is explored. This structure leads to very fast iterations since it avoids computation and factorization of impedance matrices. For each time interval, the linear algebra reduces to the solution of two linear systems, either to the number of buses or to the number of independent loops. Either matrix is invariant and can be factored off-line. As a consequence of such matrix manipulations, a linear system which changes at each iteration has to be solved, although its size is reduced to the number of generating units and is not a function of time intervals. These methods were applied to IEEE and Brazilian power systems, and numerical results were obtained using a MATLAB implementation. Both interior point methods proved to be robust and achieved fast convergence for all instances tested. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a technique for solving the multiobjective environmental/economic dispatch problem using the weighted sum and ε-constraint strategies, which transform the problem into a set of single-objective problems. In the first strategy, the objective function is a weighted sum of the environmental and economic objective functions. The second strategy considers one of the objective functions: in this case, the environmental function, as a problem constraint, bounded above by a constant. A specific predictor-corrector primal-dual interior point method which uses the modified log barrier is proposed for solving the set of single-objective problems generated by such strategies. The purpose of the modified barrier approach is to solve the problem with relaxation of its original feasible region, enabling the method to be initialized with unfeasible points. The tests involving the proposed solution technique indicate i) the efficiency of the proposed method with respect to the initialization with unfeasible points, and ii) its ability to find a set of efficient solutions for the multiobjective environmental/economic dispatch problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.