110 resultados para Interferons
Resumo:
Dendritic cells (DCs) are central player in immunity by bridging the innate and adaptive arms of the immune system (IS). Interferons (IFNs) are one of the most important factors that regulate both innate and adaptive immunity too. Thus, the understanding of how type II and I IFNs modulate the immune-regulatory properties of DCs is a central issue in immunology. In this paper, we will address this point in the light of the most recent literature, also highlighting the controversial data reported in the field. According to the wide literature available, type II as well as type I IFNs appear, at the same time, to collaborate, to induce additive effects or overlapping functions, as well as to counterregulate each one's effects on DC biology and, in general, the immune response. The knowledge of these effects has important therapeutic implications in the treatment of infectious/autoimmune diseases and cancer and indicates strategies for using IFNs as vaccine adjuvants and in DC-based immune therapeutic approaches.
Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons.
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)-producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids. This process was critical for the induction of early inflammatory responses and reepithelization of injured skin. Cathelicidin peptides, which facilitate immune recognition of released nucleic acids by promoting their access to intracellular TLR compartments, were rapidly induced in skin wounds and were sufficient but not necessary to stimulate pDC activation and type I IFN production. These data uncover a new role of pDCs in sensing tissue damage and promoting wound repair at skin surfaces.
Resumo:
Direct type I interferon (IFN) signaling on T cells is necessary for the proper expansion, differentiation, and survival of responding T cells following infection with viruses prominently inducing type I IFN. The reasons for the abortive response of T cells lacking the type I IFN receptor (Ifnar1(-/-)) remain unclear. We report here that Ifnar1(-/-) T cells were highly susceptible to natural killer (NK) cell-mediated killing in a perforin-dependent manner. Depletion of NK cells prior to lymphocytic choriomeningitis virus (LCMV) infection completely restored the early expansion of Ifnar1(-/-) T cells. Ifnar1(-/-) T cells had elevated expression of natural cytotoxicity triggering receptor 1 (NCR1) ligands upon infection, rendering them targets for NCR1 mediated NK cell attack. Thus, direct sensing of type I IFNs by T cells protects them from NK cell killing by regulating the expression of NCR1 ligands, thereby revealing a mechanism by which T cells can evade the potent cytotoxic activity of NK cells.
Resumo:
The structure-function relationship of interferons (IFNs) has been studied by epitope mapping. Epitopes of bovine IFNs, however, are practically unknown, despite their importance in virus infections and in the maternal recognition of pregnancy. It has been shown that recombinant bovine (rBo)IFN-alphaC and rBoIFN-alpha1 differ only in 12 amino acids and that the F12 monoclonal antibody (mAb) binds to a linear sequence of residues 10 to 34. We show here that the antiviral activities of these two IFNs were neutralized by the F12 mAb to different extents using two tests. In residual activity tests the antiviral activity dropped by more than 99% with rBoIFN-alphaC and by 84% with rBoIFN-alpha1. In checkerboard antibody titrations, the F12 mAb titer was 12,000 with rBoIFN-alphaC and only 600 with rBoIFN-alpha1. Since these IFNs differ in their amino acid sequence at positions 11, 16 and 19 of the amino terminus, only these amino acids could account for the different neutralization titers, and they should participate in antibody binding. According to the three-dimensional structure described for human and murine IFNs, these amino acids are located in the alpha helix A; amino acids 16 and 19 of the bovine IFNs would be expected to be exposed and could bind to the antibody directly. The amino acid at position 11 forms a hydrogen bond in human IFNs-alpha and it is possible that, in bovine IFNs-alpha, the F12 mAb, binding near position 11, would disturb this hydrogen bond, resulting in the difference in the extent of neutralization observed.
Resumo:
The Mx1 protein is encoded by an interferon- induced gene and shares domain organization, homooligomerization capacity and membrane association with the large dynamin-like GTPases. The Mx1 protein is involved in the response to a large number of RNA viruses, such as the bunyavirus family and the influenza virus. Interestingly, it has also been found as a methylation-silenced gene in several types of neoplasm, including head and neck squamous cell carcinoma. In this scenario, MX1 gene silencing is associated with immortalization in several neoplastic cell lines. Thus, Mx1 stands out as one of the key proteins involved in interferon-induced immune response and also plays an important role in cell cycle control. Here we discuss some of the functions of the Mx1 protein, including its antiviral activity, protein folding and involvement in neoplasia, as well as those revealed by investigating its cellular partners.
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.
Resumo:
Interferons not only exert a fundamental role during inflammation and immune responses but also modulate the activity of hematopoietic stem cells during homeostatic and demand-adapted hematopoiesis. Identical mechanisms regulate the homeostasis and proliferation of leukemic stem cells (LSCs). Understanding these mechanisms may lead to novel therapeutic approaches against leukemia.
Resumo:
Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.
Resumo:
BACKGROUND Rhinovirus infections are the dominant cause of asthma exacerbations, and deficient virus induction of IFN-α/β/λ in asthmatic patients is important in asthma exacerbation pathogenesis. Mechanisms causing this interferon deficiency in asthmatic patients are unknown. OBJECTIVE We sought to investigate the expression of suppressor of cytokine signaling (SOCS) 1 in tissues from asthmatic patients and its possible role in impaired virus-induced interferon induction in these patients. METHODS We assessed SOCS1 mRNA and protein levels in vitro, bronchial biopsy specimens, and mice. The role of SOCS1 was inferred by proof-of-concept studies using overexpression with reporter genes and SOCS1-deficient mice. A nuclear role of SOCS1 was shown by using bronchial biopsy staining, overexpression of mutant SOCS1 constructs, and confocal microscopy. SOCS1 levels were also correlated with asthma-related clinical outcomes. RESULTS We report induction of SOCS1 in bronchial epithelial cells (BECs) by asthma exacerbation-related cytokines and by rhinovirus infection in vitro. We found that SOCS1 was increased in vivo in bronchial epithelium and related to asthma severity. SOCS1 expression was also increased in primary BECs from asthmatic patients ex vivo and was related to interferon deficiency and increased viral replication. In primary human epithelium, mouse lung macrophages, and SOCS1-deficient mice, SOCS1 suppressed rhinovirus induction of interferons. Suppression of virus-induced interferon levels was dependent on SOCS1 nuclear translocation but independent of proteasomal degradation of transcription factors. Nuclear SOCS1 levels were also increased in BECs from asthmatic patients. CONCLUSION We describe a novel mechanism explaining interferon deficiency in asthmatic patients through a novel nuclear function of SOCS1 and identify SOCS1 as an important therapeutic target for asthma exacerbations.
Resumo:
Interferon tau (IFN tau), originally identified as a pregnancy recognition hormone, is a type I interferon that is related to the various IFN alpha species (IFN alpha s). Ovine IFN tau has antiviral activity similar to that of human IFN alpha A on the Madin-Darby bovine kidney (MDBK) cell line and is equally effective in inhibiting cell proliferation. In this study, IFN tau was found to differ from IFN alpha A in that is was > 30-fold less toxic to MDBK cells at high concentrations. Excess IFN tau did not block the cytotoxicity of IFN alpha A on MDBK cells, suggesting that these two type I IFNs recognize the type I IFN receptor differently on these cells. In direct binding studies, 125I-IFN tau had a Kd of 3.90 x 10(-10) M for receptor on MDBK cells, whereas that of 125I-IFN alpha A was 4.45 x 10(-11) M. Consistent with the higher binding affinity, IFN alpha A was severalfold more effective than IFN tau in competitive binding against 125I-IFN tau to receptor on MDBK cells. Paradoxically, the two IFNs had similar specific antiviral activities on MDBK cells. However, maximal IFN antiviral activity required only fractional occupancy of receptors, whereas toxicity was associated with maximal receptor occupancy. Hence, IFN alpha A, with the higher binding affinity, was more toxic than IFN tau. The IFNs were similar in inducing the specific phosphorylation of the type I receptor-associated tyrosine kinase Tyk2, and the transcription factors Stat1 alpha and Stat2, suggesting that phosphorylation of these signal transduction proteins is not involved in the cellular toxicity associated with type I IFNs. Experiments using synthetic peptides suggest that differences in the interaction at the N terminal of IFN tau and IFN alpha with the type I receptor complex contribute significantly to differences in high-affinity equilibrium binding of these molecules. It is postulated that such a differential recognition of the receptor is responsible for the similar antiviral but different cytotoxic effects of these IFNs. Moreover, these data imply that receptors are "spare'' with respect to certain biological properties, and we speculate that IFNs may induce a concentration-dependent selective association of receptor subunits.
Resumo:
To examine the in vivo role(s) of type I interferons (IFNs) and to determine the role of a component of the type I IFN receptor (IFNAR1) in mediating responses to these IFNs, we generated mice with a null mutation (-/-) in the IFNAR1 gene. Despite compelling evidence for modulation of cell proliferation and differentiation by type I IFNs, there were no gross signs of abnormal fetal development or morphological changes in adult IFNAR1-/- mice. However, abnormalities of hemopoietic cells were detected in IFNAR1 -/- mice. Elevated levels of myeloid lineage cells were detected in peripheral blood and bone marrow by staining with Mac-1 and Gr-1 antibodies. Furthermore, bone marrow macrophages from IFNAR1 -/- mice showed abnormal responses to colony-stimulating factor 1 and lipopolysaccharide. IFNAR1 -/- mice were highly susceptible to viral infection: viral titers were undetected 24 hr after infection of IFNAR1 +/+ mice but were extremely high in organs of IFNAR1 -/- mice, demonstrating that the type I IFN system is a major acute antiviral defence. In cell lines derived from IFNAR1 -/- mice, there was no signaling in response to IFN-alpha or -beta as measured by induction of 2'-5' oligoadenylate synthetase, antiviral, or antiproliferative responses. Importantly, these studies demonstrate that type I IFNs function in the development and responses of myeloid lineage cells, particularly macrophages, and that the IFNAR1 receptor component is essential for antiproliferative and antiviral responses to IFN-alpha and -beta.
Resumo:
We investigated the influence of interferons alpha, beta, and gamma (IFN-alpha, -beta, and -gamma) on the production of basic fibroblast growth factor (bFGF) by human renal carcinoma cells. The human renal carcinoma cell metastatic line SN12PM6 was established in culture from a lung metastasis and SN12PM6-resistant cells were selected in vitro for resistance to the antiproliferative effects of IFN-alpha or IFN-beta. IFN-alpha and IFN-beta, but not IFN-gamma, down-regulated the expression of bFGF at the mRNA and protein levels by a mechanism independent of their antiproliferative effects. Down-regulation of bFGF required a long exposure (> 4 days) of cells to low concentrations (> 10 units/ml) of IFN-alpha or IFN-beta. The withdrawal of IFN-alpha or IFN-beta from the medium permitted SN12PM6-resistant cells to resume production of bFGF. The incubation of human bladder, prostate, colon, and breast carcinoma cells with noncytostatic concentrations of IFN-alpha or IFN-beta also produced down-regulation of bFGF production.
Resumo:
Studies of 4 to 6 months of treatment with interferon for hepatitis B e antigen (HBeAg)-positive chronic hepatitis B virus (HBV) infection have shown clearance of HBeAg to be higher in treated patients than it is in controls by approximately 25%. These results are considerably better than those with antiviral agents. Therefore, the recent European Association for the Study of the Liver (EASL) Consensus Committee recommended the use of interferon alpha for this condition. Treatment with pegylated interferons in several trials has shown better results still. Lamivudine in combination with interferon, however, did not improve the results at 6 months after the end of therapy. In HBeAg-negative chronic HBV infection, pegylated interferon alpha is superior to lamivudine, and, again, combination with lamivudine does not improve the results. Side effects in all studies have been tolerable. Thus, these observations in chronic HBV infection, whether HBeAg-positive or HBeAg-negative, suggest an important, even primary, role for pegylated interferon therapy.
Resumo:
AIM: To evaluate the epidemiological, clinical, laboratory and histological variables capable of predicting the progression of hepatic structural disturbances in chronic hepatitis C patients during the time interval between two liver biopsies. METHODS: Clinical charts of 112 chronic hepatitis C patients were retrospectively analyzed, whereas liver biopsies were revised. Immunohistochemical detection of interferon receptor was based on the Envision-Peroxidase System. RESULTS: In the multivariate analysis, the variables in the age at first biopsy, ALT levels, presence of lymphoid aggregates and siderosis were the determinants of the best model for predicting the severity of the disease. The direct progression rate of hepatic structural lesions was significantly higher in untreated patients, intermediate in treated non-responders and lower in treated responders to antiviral therapy (non-treated vs responders, 0.22 +/- 0.50 vs -0.15 +/- 0.46, P = 0.0053). Immuno-expression of interferon receptor is not a relevant factor. CONCLUSION: The best predictors of the progression of fibrosis are age at the first liver biopsy, extent of ALT elevation, inflammation at liver histology and hepatic siderosis. Antiviral treatment is effective in preventing the progression of liver structural lesions in chronic hepatitis C patients. (C) 2008 WJG. All rights reserved.