853 resultados para Interfaces gráficas de usuário (Sistema de computador)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A partir dos avanços obtidos pela industria farmacêutica surgiram diversos medicamentos para o combate de enfermidades. Esses medicamentos possuem efeito tópico similar porém com suaves modificações em sua estrutura bioquímica, com isso a concorrência entre as industrias farmacêuticas se torna cada vez mais acirrada. Como forma de comparar a efetividade desses medicamentos, surgem diversas metodologias, com o objetivo de encontrar qual seria o melhor medicamento para uma dada situação. Uma das metodologias estudadas é a comparação mista de tratamentos, cujo objetivo é encontrar a efetividade de determinadas drogas em estudos e/ou ensaios clínicos que abordem, mesmo que de maneira indireta, os medicamentos estudados. A utilização dessa metodologia é demasiadamente complexa pois requer conhecimento de linguagens de programação em ambientes estatísticos além do domínio sobre as metodologias aplicadas a essa técnica. O objetivo principal desse estudo é a criação de uma interface gráfica que facilite a utilização do MTC para usuários que não possuam conhecimento em linguagens de programação, que seja de código aberto e multiplataforma. A expectativa é que, com essa interface, a utilização de técnicas mais abrangentes e avançadas seja facilitada, além disso, venha tornar o ensinamento sobre o tema mais facilitado para pessoas que ainda não conhecem o método

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose the Interperception paradigm, a new approach that includes a set of rules and a software architecture for merge users from different interfaces in the same virtual environment. The system detects the user resources and provide transformations on the data in order to allow its visualization in 3D, 2D and textual (1D) interfaces. This allows any user to connect, access information, and exchange information with other users in a feasible way, without needs of changing hardware or software. As results are presented two virtual environments builded acording this paradigm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apresentamos uma interface gráfica para o programa eGs (electrical GEOPHYSICS suíte) usado na modelagem e interpretação de dados elétricos e eletromagnéticos na exploração geofísica. Esta dissertação corresponde a parcela do programa que trata das interfaces de entrada de dados de modelos geoelétricos bi e tridimensionais e das interfaces de apresentação dos resultados da modelagem como também dos dados observados. O programa contém interfaces para criação, modificação e visualização de modelos geoelétricos bi e tridimensionais, e para apresentação da resposta do modelo através de gráficos e imagens. Este trabalho resultou num programa com diversas opções para alterar a geometria e as propriedades físicas do modelo geoelétricos e recursos de visualização para facilitar a interpretação de dados geofísicos. A interface gráfica pode ser usada para criar modelos geoelétricos dos métodos elétrico ou eletromagnético mais usados e analisar as respostas dos modelos e de dados observados em campanha de campo. O programa é suficientemente flexível de modo que novas interfaces gráficas de outros métodos elétricos e eletromagnéticos podem ser facilmente implementadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrutura da ferramenta ServCLIPS. Representação de interfaces com o usuário em XML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orientador: Alberto Manuel Rodrigues da Silva

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica:  Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool).  Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral.  Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx.  Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema.  Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta pesquisa tem como finalidade explorar os recursos de interação do usuário com a informação georreferenciada, utilizando o próprio ambiente físico e seus elementos como interface. A indexação geográfica de arquivos digitais e os recursos disponíveis pela computação móvel estabeleceram um novo modelo de interação com a informação. Cabe ao designer criar sistemas e interfaces que levem em consideração a localização do usuário no acesso da informação atribuída ao entorno. Foi identificado que as soluções desenvolvidas para esse propósito utilizam telas e outros aparatos tecnológicos que constrangem a relação do usuário com o ambiente e interferem na experiência interativa. Como desdobramento da pesquisa foi desenvolvido um aplicativo que dispensa a tela na visualização e interação com a camada informacional do ambiente físico. O sistema utiliza os sensores de localização e orientação presentes nos smartphones para interagir com o entorno mapeado e georreferenciado. Dessa forma, o usuário, ao apontar o aparelho e selecionar diretamente o objeto de interesse, recebe os dados atribuídos a ele. Sem a interferência de telas ou dispositivos imersivos, o próprio ambiente se apresenta como interface de interação, dispensando novos ícones ou símbolos e tornando a tecnologia mais sutil em seu uso cotidiano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de redes de Comunicação e Multimédia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O sucesso da Internet como plataforma de distribuição de sistemas de informação encoraja organizações a disponibilizar serviços presentes em seus sistemas legados nesse ambiente. Uma parte desses sistemas foi desenvolvida na fase inicial do desenvolvimento das aplicações cliente/servidor para banco de dados, usando ambientes visuais com interfaces gráficas tipo WIMP, implementadas sob o paradigma procedimental/estruturado, baseado em objetos e eventos. Como conseqüência, produziu-se sistemas legados difíceis de manter, evoluir e adaptar a novas tecnologias e arquiteturas, pois os projetos desenvolvidos não seguiam, na maioria das vezes, os bons preceitos e práticas modernas defendidas na Engenharia de Software. O objetivo deste trabalho é propor uma metodologia para migrar sistemas legados com as características citadas acima para a plataforma Web. O processo de migração proposto destaca duas estratégias: a elaboração de modelos de classes conceituais da aplicação e o tratamento dado à interface do usuário, para serem utilizados na reconstrução de uma nova aplicação. O processo é baseado em técnicas e métodos de engenharia reversa, que visa obter abstrações por meio de análise estática e dinâmica da aplicação. Na análise dinâmica, destaca-se o mecanismo para recuperar aspectos dos requisitos funcionais do sistema legado e representá-los na ferramenta denominada UC/Re (Use Case para Reengenharia). Todos os artefatos gerados durante o processo podem ser armazenados em um repositório, representando os metamodelos construídos na metodologia. Para delimitar e exemplificar o processo, escolheu-se como domínio de linguagem de programação do software legado, o ambiente Delphi (sob a linguagem Object Pascal). É proposto também um ambiente CASE, no qual é descrito o funcionamento de um protótipo que automatiza grande parte das funcionalidades discutidas nas etapas do processo. Algumas ferramentas desenvolvidas por terceiros são empregadas na redocumentação do sistema legado e na elaboração dos modelos UML do novo sistema. Um estudo de caso, apresentando uma funcionalidade específica de um sistema desenvolvido em Delphi, no paradigma procedimental, é usado para demonstrar o protótipo e serve de exemplo para a validação do processo. Como resultado do processo usando o protótipo, obtém-se o modelo de classes conceituais da nova aplicação no formato XMI (formato padrão para exportação de modelos UML), e gabaritos de páginas em HTML, representando os componentes visuais da interface original na plataforma Web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento de projetos de interfaces gráficas está apoiado em guias de recomendações. Estes guias apresentam regras genéricas aos projetos de Interfaces Homem Computador–IHC. Entretanto, aplicações particulares, como as educacionais, não encontram regras específicas que atendam as necessidades do usuário-alvo. Ainda, a análise comparativa entre guias disponíveis aponta contradições entre as recomendações genéricas com aquelas específicas aplicadas a um determinado ambiente. A necessidade de um modelo de referência para a construção de interfaces gráficas amigáveis ao usuário e a escassez e contradições de recomendações específicas às aplicações educacionais motivaram o trabalho de pesquisa prática junto aos usuáriosalvo. Para a identificação das recomendações sobre aspectos gráficos básicos e elementos de navegação necessários a uma efetiva interação com interfaces dedicadas a aplicações educacionais, foi desenvolvido um instrumento de pesquisa que permitiu a investigação das preferências relativas aos aspectos pesquisados junto ao público-alvo. Os dados coletados foram tratados estatisticamente e os resultados obtidos contrariam tanto critérios adotados em interfaces de sistemas de ensino disponíveis na Internet como algumas recomendações sobre os mesmos disponíveis na literatura. Os resultados obtidos apontam, também, para a preferência dos usuários por elementos de navegação que não são referidos nos guias de recomendações consultados. A análise dos resultados possibilitou a geração de um modelo básico que recomenda preferências sobre aspectos gráficos básicos, como aplicação de cores em fontes e fundos de tela, tipologia de fontes para textos e paginação, e também, sobre componentes de navegação, como posicionamento e preferência por tipo de recurso de navegação. O modelo proposto está fundamentado nas recomendações de Nielsen [NIE 00], o qual recomenda que as necessidades dos usuários na interatividade com a interface sejam identificadas junto a estes usuários. As recomendações apresentadas neste trabalho foram utilizadas, inicialmente, nos ambientes educacionais desenvolvidos dentro dos projetos Tapejara [TAP 00] e LaVia [LAV 00].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is increasingly common use of a single computer system using different devices - personal computers, telephones cellular and others - and software platforms - systems graphical user interfaces, Web and other systems. Depending on the technologies involved, different software architectures may be employed. For example, in Web systems, it utilizes architecture client-server - usually extended in three layers. In systems with graphical interfaces, it is common architecture with the style MVC. The use of architectures with different styles hinders the interoperability of systems with multiple platforms. Another aggravating is that often the user interface in each of the devices have structure, appearance and behaviour different on each device, which leads to a low usability. Finally, the user interfaces specific to each of the devices involved, with distinct features and technologies is a job that needs to be done individually and not allow scalability. This study sought to address some of these problems by presenting a reference architecture platform-independent and that allows the user interface can be built from an abstract specification described in the language in the specification of the user interface, the MML. This solution is designed to offer greater interoperability between different platforms, greater consistency between the user interfaces and greater flexibility and scalability for the incorporation of new devices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using formal methods, the developer can increase software s trustiness and correctness. Furthermore, the developer can concentrate in the functional requirements of the software. However, there are many resistance in adopting this software development approach. The main reason is the scarcity of adequate, easy to use, and useful tools. Developers typically write code and test it. These tests usually consist of executing the program and checking its output against its requirements. This, however, is not always an exhaustive discipline. On the other side, using formal methods one might be able to investigate the system s properties further. Unfortunately, specification languages do not always have tools like animators or simulators, and sometimes there are no friendly Graphical User Interfaces. On the other hand, specification languages usually have a compiler which normally generates a Labeled Transition System (LTS). This work proposes an application that provides graphical animation for formal specifications using the LTS as input. The application initially supports the languages B, CSP, and Z. However, using a LTS in a specified XML format, it is possible to animate further languages. Additionally, the tool provides traces visualization, the choices the user did, in a graphical tree. The intention is to improve the comprehension of a specification by providing information about errors and animating it, as the developers do for programming languages, such as Java and C++.