909 resultados para Interface usability
Resumo:
In modem hitec industry Advanced Planning and Scheduling (APS) systems provide the basis for e-business solutions towards the suppliers and the customers. One objective of this thesis was to clarify the modem supply chain management with the APS systems and especially concentrate on the area of Collaborative Planning. In order Advanced Planning and Scheduling systems to be complete and usable, user interfaces are needed. Current Visual Basic user interfaces have faced many complaints and arguments from the users as well as from the development team. This thesis is trying to analyze the reasons and causes for the encountered problems and also provide ways to overcome them. The decision has been made to build the new user interfaces to be Web-enabled. Therefore another objective of this thesis was to research and find suitable technologies for building the Web-based user interfaces for Advanced Planning and Scheduling Systems in Nokia Demand/Supply Planning business area. Comparison between the most suitable technologies is made. Usability issues of Web-enabled user interfaces are also covered. The empirical part of the thesis includes design and implementation of a Web-based user interface with the chosen technology for a particular APS module that enables Collaborative Planning with suppliers.
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
During the summer of 2016, Duke University Libraries staff began a project to update the way that research databases are displayed on the library website. The new research databases page is a customized version of the default A-Z list that Springshare provides for its LibGuides content management system. Duke Libraries staff made adjustments to the content and interface of the page. In order to see how Duke users navigated the new interface, usability testing was conducted on August 9th, 2016.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Optical activity is the ability of chiral substances to rotate the plane of plane-polarized light and is measured using an instrument called a polarimeter. An educational software application to explore, both interactively and visually, the concepts related to polarimetry to facilitate their understanding was developed. The software was field-tested and a questionnaire evaluating the graphics interface, usability and the software as an educational tool, was answered by students. The results characterized the computer application developed as an auxiliary tool for assisting teachers in lectures and students in the learning process.
Resumo:
Today, the user experience and usability in software application are becoming a major design issue due to the adaptation of many processes using new technologies. Therefore, the study of the user experience and usability might be included in every software development project and, thus, they should be tested to get traceable results. As a result of different testing methods to evaluate the concepts, a non-expert on the topic might have doubts on which option he/she should opt for and how to interpret the outcomes of the process. This work aims to create a process to ease the whole testing methodology based on the process created by Seffah et al. and a supporting software tool to follow the procedure of these testing methods for the user experience and usability.
Resumo:
Technological innovations, the development of the internet, and globalization have increased the number and complexity of web applications. As a result, keeping web user interfaces understandable and usable (in terms of ease-of-use, effectiveness, and satisfaction) is a challenge. As part of this, designing userintuitive interface signs (i.e., the small elements of web user interface, e.g., navigational link, command buttons, icons, small images, thumbnails, etc.) is an issue for designers. Interface signs are key elements of web user interfaces because ‘interface signs’ act as a communication artefact to convey web content and system functionality, and because users interact with systems by means of interface signs. In the light of the above, applying semiotic (i.e., the study of signs) concepts on web interface signs will contribute to discover new and important perspectives on web user interface design and evaluation. The thesis mainly focuses on web interface signs and uses the theory of semiotic as a background theory. The underlying aim of this thesis is to provide valuable insights to design and evaluate web user interfaces from a semiotic perspective in order to improve overall web usability. The fundamental research question is formulated as What do practitioners and researchers need to be aware of from a semiotic perspective when designing or evaluating web user interfaces to improve web usability? From a methodological perspective, the thesis follows a design science research (DSR) approach. A systematic literature review and six empirical studies are carried out in this thesis. The empirical studies are carried out with a total of 74 participants in Finland. The steps of a design science research process are followed while the studies were designed and conducted; that includes (a) problem identification and motivation, (b) definition of objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) communication. The data is collected using observations in a usability testing lab, by analytical (expert) inspection, with questionnaires, and in structured and semi-structured interviews. User behaviour analysis, qualitative analysis and statistics are used to analyze the study data. The results are summarized as follows and have lead to the following contributions. Firstly, the results present the current status of semiotic research in UI design and evaluation and highlight the importance of considering semiotic concepts in UI design and evaluation. Secondly, the thesis explores interface sign ontologies (i.e., sets of concepts and skills that a user should know to interpret the meaning of interface signs) by providing a set of ontologies used to interpret the meaning of interface signs, and by providing a set of features related to ontology mapping in interpreting the meaning of interface signs. Thirdly, the thesis explores the value of integrating semiotic concepts in usability testing. Fourthly, the thesis proposes a semiotic framework (Semiotic Interface sign Design and Evaluation – SIDE) for interface sign design and evaluation in order to make them intuitive for end users and to improve web usability. The SIDE framework includes a set of determinants and attributes of user-intuitive interface signs, and a set of semiotic heuristics to design and evaluate interface signs. Finally, the thesis assesses (a) the quality of the SIDE framework in terms of performance metrics (e.g., thoroughness, validity, effectiveness, reliability, etc.) and (b) the contributions of the SIDE framework from the evaluators’ perspective.
Resumo:
The article presents a new method to estimating usability of a user interface based on its model. The principal features of the method are: creation of an expandable knowledge base of usability defects, detection defects based on the interface model, within the design phase, and information to the developer not only about existence of defects but also advice on their elimination.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
This paper presents a catalog of smells in the context of interactive applications. These so-called usability smells are indicators of poor design on an application’s user interface, with the potential to hinder not only its usability but also its maintenance and evolution. To eliminate such usability smells we discuss a set of program/usability refactorings. In order to validate the presented usability smells catalog, and the associated refactorings, we present a preliminary empirical study with software developers in the context of a real open source hospital management application. Moreover, a tool that computes graphical user interface behavior models, giving the applications’ source code, is used to automatically detect usability smells at the model level.
Resumo:
In this paper we present a user-centered interface for a scheduling system. The purpose of this interface is to provide graphical and interactive ways of defining a scheduling problem. To create such user interface an evaluation-centered user interaction development method was adopted: the star life cycle. The created prototype comprises the Task Module and the Scheduling Problem Module. The first one allows users to define a sequence of operations, i.e., a task. The second one enables a scheduling problem definition, which consists in a set of tasks. Both modules are equipped with a set of real time validations to assure the correct definition of the necessary data input for the scheduling module of the system. The usability evaluation allowed us to measure the ease of interaction and observe the different forms of interaction provided by each participant, namely the reactions to the real time validation mechanism.