960 resultados para Interface absorption models
Resumo:
Temperature fields of 355 nm high-reflectance (HR) coatings were investigated based on the interface absorption model. It was found that the highest temperature in the HR coatings increased with an increase in the extinction coefficient of the interface A, B, C, Al2O3 and MgF2. The highest temperature of HR coatings that can be reached increased quickly with the increase in the extinction coefficient of interface A in particular. The temperature rises of 355 nm HR coatings at different layers and different deposition temperatures were investigated based on experiments also. The damage mechanism of 355 nm HR coatings was confirmed with temperature fields and the interface absorption model.
Resumo:
Considering the interface absorption in optical coatings, we propose a model to simulate interface absorption. Calculations are made and the temperature field of several kinds of thin film multilayers, including those of partial reflectivity, high-reflectivity, and antireflectivity coatings are analyzed. The interface absorption is found to greatly influence the temperature distribution within multilayer coatings and to weaken the laser damage resistance of the samples. The real-time results of the photothermal deflection technique for laser induced damage to samples supports the model. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Time domain laser reflectance spectroscopy (TDRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous non-destructive measuring of two optical characteristics of the tissues: light scattering and absorption. Models to measure firmness, sugar & acid contents in kiwifruit, tomato, apple, peach, nectarine and other fruits were built using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TDRS, i.e. absorption & transport scattering coefficients, with chemical constituents (sugars and acids) and firmness, respectively. Classification models were built to sort fruits into three quality grades, according to their firmness, soluble solids and acidity.
Resumo:
Process choreographies describe interactions between different business partners and the dependencies between these interactions. While different proposals were made for capturing choreographies at an implementation level, it remains unclear how choreographies should be described on a conceptual level.While the Business Process Modeling Notation (BPMN) is already in use for describing choreographies in terms of interconnected interface behavior models, this paper will introduce interaction modeling using BPMN. Such interaction models do not suffer from incompatibility issues and are better suited for human modelers. BPMN extensions are proposed and a mapping from interaction models to interface behavior models is presented.
Resumo:
The curvature-stress relation is studied for a film-substrate bilayer with the effect of interfacial slip and compared with that of an ideal interface without interfacial slip. The interfacial slip together with the dimensions, elastic and interfacial properties of the film and substrate layers can cause a significant deviation of curvature-stress relation from that with an ideal interface. The interfacial slip also results in the so-called free edge effect that the stress, constraint force, and curvature vary dramatically around the free edges. The constant curvature as predicted by Stoney's formula and the Timoshenko model of an ideal interface is no longer valid for a bilayer with a nonideal interface. The models with the assumption of an ideal interface can also lead to an erroneous evaluation on the true stress state inside a bilayer with a nonideal interface. The extended Stoney's formula incorporating the effects of both the layer dimensions and interfacial slip is presented.
Resumo:
In COPD inflammation driven by exposure to tobacco smoke results in impaired innate immunity in the airway and ultimately to lung injury and remodeling. To understand the biological processes involved in host interactions with cigarette derived toxins submerged epithelial cell culture is widely accepted as a model for primary human airway epithelial cell culture research. Primary nasal and bronchial epithelial cells can also be cultured in air-liquid interface (ALI) models. ALI and submerged culture models have their individual merits, and the decision to use either technique should primarily be determined primarily by the research hypothesis.
Cigarette smoke has gaseous and particulate matter, the latter constituent primarily represented in cigarette smoke extract (CSE). Although not ideal in order to facilitate our understanding of the responses of epithelial cells to cigarette smoke, CSE still has scientific merit in airway cell biology research. Using this model, it has been possible to demonstrate differences in levels of tight junction disruption after CSE exposure along with varied vulnerability to the toxic effects of CSE in cell cultures derived from COPD and control study groups.
Primary nasal epithelial cells (PNECs) have been used as an alternative to bronchial epithelial cells (PBECs). However, at least in subjects with COPD, PNECs cannot consistently substitute for PBECs. Although airway epithelial cells from patients with COPD exhibit a constitutional pro-inflammatory phenotype, these cells have a diminished inflammatory response to CSE exposure. COPD epithelial cells have an increased susceptibility to undergo apoptosis, and have reduced levels of Toll-like receptor-4 expression after CSE exposure, both of which may account for the reduced inflammatory response observed in this group.
The use of CSE in both submerged and ALI epithelial cultures has extended our understanding of the cellular mechanisms that are important in COPD, and helped to unravel important pathways which may be of relevance in its pathogenesis.
Resumo:
Objective: To investigate whether intakes of Ca, vitamin D, casein and whey are associated with periodontitis and to investigate the possibility of interactions between them. Design: Cross-sectional study. An Internet-based, 267-item FFQ was used to assess dietary intake. Intakes of casein (32·0 g/d), whey proteins (9·6 g/d) and vitamin D (5·8 μg/d) were classified as within v. above the 50th percentile. Ca intake was classified as within v. below age-specific recommendations. Severe periodontitis was defined as having ≥2 inter-proximal sites with clinical attachment loss ≥6 mm (not on the same tooth) and ≥1 inter-proximal site with pocket depth ≥5 mm. Since vitamin D influences Ca absorption, models were stratified by lower and higher (<5·8 v. ≥5·8 µg/d) vitamin D intake. Setting Danish Health Examination Survey (DANHES) 2007–2008. Subjects Adult participants (n 3287) in the oral health study of DANHES 2007–2008. Results Intakes of Ca within recommendations (OR=0·76; 95 % CI 0·58, 0·99), whey ≥9·6 g/d (OR=0·75; 95 % CI 0·58, 0·97) and casein ≥32 g/d (OR=0·75 95 % CI 0·58, 0·97) were associated with lower likelihood of severe periodontitis after adjustment for age, gender, education, smoking, sucrose intake, alcohol consumption, number of teeth, daily brushing, regular visits to the dentist and chronic illness, irrespective of vitamin D intake levels. Intake of vitamin D alone was not associated severe with periodontitis. Conclusions Intakes of Ca, casein and whey protein were inversely associated with periodontitis. Consumption of foods rich in Ca, casein and whey (e.g. dairy foods) should be promoted, as they may contribute to the prevention of periodontitis. Further longitudinal studies are required to confirm these associations.
Resumo:
OBJECTIVE: To investigate whether intakes of Ca, vitamin D, casein and whey are associated with periodontitis and to investigate the possibility of interactions between them. DESIGN: Cross-sectional study. An Internet-based, 267-item FFQ was used to assess dietary intake. Intakes of casein (32.0 g/d), whey proteins (9.6 g/d) and vitamin D (5.8 mug/d) were classified as within v. above the 50th percentile. Ca intake was classified as within v. below age-specific recommendations. Severe periodontitis was defined as having >/=2 inter-proximal sites with clinical attachment loss >/=6 mm (not on the same tooth) and >/=1 inter-proximal site with pocket depth >/=5 mm. Since vitamin D influences Ca absorption, models were stratified by lower and higher (<5.8 v. >/=5.8 microg/d) vitamin D intake. SETTING: Danish Health Examination Survey (DANHES) 2007-2008. SUBJECTS: Adult participants (n 3287) in the oral health study of DANHES 2007-2008. RESULTS: Intakes of Ca within recommendations (OR=0.76; 95 % CI 0.58, 0.99), whey >/=9.6 g/d (OR=0.75; 95 % CI 0.58, 0.97) and casein >/=32 g/d (OR=0.75 95 % CI 0.58, 0.97) were associated with lower likelihood of severe periodontitis after adjustment for age, gender, education, smoking, sucrose intake, alcohol consumption, number of teeth, daily brushing, regular visits to the dentist and chronic illness, irrespective of vitamin D intake levels. Intake of vitamin D alone was not associated severe with periodontitis. CONCLUSIONS: Intakes of Ca, casein and whey protein were inversely associated with periodontitis. Consumption of foods rich in Ca, casein and whey (e.g. dairy foods) should be promoted, as they may contribute to the prevention of periodontitis. Further longitudinal studies are required to confirm these associations.
Resumo:
Objective Levodopa in presence of decarboxylase inhibitors is following two-compartment kinetics and its effect is typically modelled using sigmoid Emax models. Pharmacokinetic modelling of the absorption phase of oral distributions is problematic because of irregular gastric emptying. The purpose of this work was to identify and estimate a population pharmacokinetic- pharmacodynamic model for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Methods The modelling involved pooling data from two studies and fixing some parameters to values found in literature (Chan et al. J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):307-31). The first study involved 12 patients on 3 occasions and is described in Nyholm et al. Clinical Neuropharmacology 2003:26:156-63. The second study, PEDAL, involved 3 patients on 2 occasions. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Plasma samples and motor ratings (clinical assessment of motor function from video recordings on a treatment response scale between -3 and 3, where -3 represents severe parkinsonism and 3 represents severe dyskinesia.) were repeatedly collected until the clinical effect was back at baseline. At this point, the usual infusion rate was started and sampling continued for another two hours. Different structural absorption models and effect models were evaluated using the value of the objective function in the NONMEM package. Population mean parameter values, standard error of estimates (SE) and if possible, interindividual/interoccasion variability (IIV/IOV) were estimated. Results Our results indicate that Duodopa absorption can be modelled with an absorption compartment with an added bioavailability fraction and a lag time. The most successful effect model was of sigmoid Emax type with a steep Hill coefficient and an effect compartment delay. Estimated parameter values are presented in the table. Conclusions The absorption and effect models were reasonably successful in fitting observed data and can be used in simulation experiments.
Resumo:
Chitosans have been widely exploited in biological applications, including drug delivery and tissue engineering, especially owing to their mucoadhesive properties, but the molecular-level mechanisms for the chitosan action are not known in detail. It is believed that chitosan could affect the mucus by interacting with the proteins mucins, in a process mediated by the cell membrane. In this study we used Langmuir monolayers of dimyristoylphosphatidic acid (DMPA) as simplified membrane models to investigate the interplay between the activity of mucins and chitosan. Surface pressure and surface potential measurements were performed with DMPA monolayers onto which chitosan and/or mucin was adsorbed. We found that the expanding effect from mucin was considerably reduced when chitosan was injected after mucin had been adsorbed on the DMPA monolayer. The results were consistent with the formation of complexes between mucin and chitosan, thus highlighting the importance of electrostatic interactions. Furthermore, chitosan could remove mucin that was co-deposited along with DMPA in Langmuir-Blodgett (LB) films, which could be ascribed to molecular-level interactions between chitosan and mucin inferred from the FTIR spectra of the LB films. In conclusion, the results with Langmuir and LB films suggest that electrostatic interactions are crucial for the mucoadhesive mechanism, which is affected by the complexation between chitosan and mucin. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
The behavior of monolayer films of free base 5,10,15,20-tetrapyridylporphinato (TPyP) and 5,10,15,20-tetrapyridylporphinato zinc(II) (ZnTPyP) on pure water, 0.1 M CdCl2, and 0.1 M CuCl2 subphases was investigated by surface pressure-area isotherms, specular X-ray reflectometry, and polarized total reflection X-ray absorption spectroscopy (PTRXAS). Surface pressure-area isotherms showed significant differences in the area per molecule on pure water compared to that on salt subphases, with a marked increase in the area observed on the salt solutions. This behavior was noted for both forms of the porphyrin and both salts investigated. Modeling of specular X-ray reflectometry data indicated that thinner and more electron dense layers on salt subphases best fit the observed profiles. These data suggest that the porphyrin macrocycle is oriented parallel to the interface on salt subphases and takes on a tilted conformation on pure water. In the case of ZnTPyP, PTRXAS was used to determine the orientation of the porphyrin moiety relative to the surface and to probe the coordination of the central Zn ion. In agreement with the pressure-area isotherms and reflectometry, the PTRXAS data indicate a change in orientation on the salt subphases.