996 resultados para Interface Crack
Resumo:
The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.
Resumo:
In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced to a set of dual integral equations of crack open displacement function in the transformation domain. The dual integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE) by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.
Resumo:
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress,intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.
Resumo:
In this paper, the strain gradient theory proposed by Chen and Wang (2001 a, 2002b) is used to analyze an interface crack tip field at micron scales. Numerical results show that at a distance much larger than the dislocation spacing the classical continuum plasticity is applicable; but the stress level with the strain gradient effect is significantly higher than that in classical plasticity immediately ahead of the crack tip. The singularity of stresses in the strain gradient theory is higher than that in HRR field and it slightly exceeds or equals to the square root singularity and has no relation with the material hardening exponents. Several kinds of interface crack fields are calculated and compared. The interface crack tip field between an elastic-plastic material and a rigid substrate is different from that between two elastic-plastic solids. This study provides explanations for the crack growth in materials by decohesion at the atomic scale.
Resumo:
研究两半无限大黏弹性体间Griffith界面裂纹在简谐载荷作用下裂纹尖端动应力场的奇异特性.通过引入裂纹张开位移和裂纹位错密度函数,相应的混合边值问题归结为一组耦合的奇异积分方程.渐近分析表明裂尖动应力场的奇异特征完全包含在奇异积分方程的基本解中.通过对基本解的深入分析发现黏弹性材料界面裂纹裂尖动应力场具有与材料参数和外载荷频率相关的振荡奇异特性.以标准线性固体黏弹材料为例讨论了材料参数和载荷频率对奇性指数和振荡指数的影响.
Resumo:
In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.
Resumo:
The singular nature of the dynamic stress fields around an interface crack located between two dissimilar isotropic linearly viscoelastic bodies is studied. A harmonic load is imposed on the surfaces of the interface crack. The dynamic stress fields around the crack are obtained by solving a set of simultaneous singular integral equations in terms of the normal and tangent crack dislocation densities. The singularity of the dynamic stress fields near the crack tips is embodied in the fundamental solutions of the singular integral equations. The investigation of the fundamental solutions indicates that the singularity and oscillation indices of the stress fields are both dependent upon the material constants and the frequency of the harmonic load. This observation is different from the well-known -1/2 oscillating singularity for elastic bi-materials. The explanation for the differences between viscoelastic and elastic bi-materials can be given by the additional viscosity mismatch in the case of viscoelastic bi-materials. As an example, the standard linear solid model of a viscoelastic material is used. The effects of the frequency and the material constants (short-term modulus, long-term modulus and relaxation time) on the singularity and the oscillation indices are studied numerically.
Resumo:
A new mechanics model based on Peierls concept is presented in this paper, which can clearly characterize the intrinsic features near a tip of an interfacial crack. The stress and displacement fields are calculated under general combined tensile and shear loadings. The near tip stress fields show some oscillatory behaviors but without any singularity and the crack faces open completely without any overlapping when remote tensile loading is comparable with remote shear loading. A fracture criterion for predicting interface toughness has been also proposed, which takes into account for the shielding effects of emitted dislocations. The theoretical toughness curve gives excellent prediction, as compared with the existing experiment data.
Resumo:
A detailed analysis of kinking of an interface crack between two dissimilar anisotropic elastic solids is presented in this paper. The branched crack is considered as a distributed dislocation. A set of the singular integral equations for the distribution function of the dislocation density is developed. Explicit formulas of the stress intensity factors and the energy release rates for the branched crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals. The role of the stress parallel to the interface, sigma0 is taken into account in these formulas. The interface crack can advance either by continued extension along the interface or by kinking out of the interface into one of the adjoining materials. This competition depends on the ratio of the energy release rates for interface cracking and for kinking out of the interface and the ratio of interface toughness to substrate toughness. Throughout the paper, the influences of the inplane stress sigma0 on the stress intensity factors and the energy release rates for the branched crack, which can significantly alter the conditions for interface cracking, are emphasized.
Resumo:
A steady-state subsonic interface crack propagating between an elastic solid and a rigid substrate with crack face contact is studied. Two cases with respective to the contact length are considered, i.e., semi-infinite and finite crack face contact. Different from a stationary or an open subsonic interface crack, stress singularity at the crack tip in the present paper is found to be non-oscillatory. Furthermore, in the semi-infinite contact case, the singularity of the stress field near the crack tip is less than 1/2. In the finite contact case, no singularity exists near the crack tip, but less than 1/2 singularity does at the end of the contact zone. In both cases, the singularity depends on the linear contact coefficient and the crack speed. Asymptotic solutions near the crack tip are given and analyzed. In order to satisfy the contact conditions, reasonable region of the linear contact coefficient is found. In addition, the solution predicts a non-zero-energy dissipation rate due to crack face contact.
Resumo:
The complex singularity associated with a crack at the interface between two dissimilar, isotropic and homogeneous materials leads to mathematical artefacts, such as stress oscillations and crack face interpenetrations in the vicinity of the crack tip. To avoid these unrealistic features, Sinclair (Sinclair GB. On the stress singularity at an interface crack. International Journal of Fracture 1980;16(2):111-9) assumed a finite crack opening angle (COA) such that the singularity lambda became real equal to 1/2. This paper extends the COA model by considering real singularities not necessarily equal to 1/2. When COA is 0 degrees: the interface crack singularity is complex with a real part equal to 1/2. On increasing COA, the imaginary part of the singularity decreases and becomes zero at a threshold value of COA; at this point, the singularity is a real, repeated value. A further increase in COA results in a pair of real singularities. Different crack opening configurations and material combinations are studied, and results presented for threshold COAs and associated values of singularity. Stress analyses for these three regimes: (a) complex, (b) real pair and (c) real repeated singularities, are reported. It is seen that additional complexities are present in the last case. Typical results for stress fields are also included for comparing with standard fields. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Mishuris, G; Kuhn, G., (2001) 'Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface', Zeitschrift f?r Angewandte Mathematik und Mechanik 81(12) pp.811-826 RAE2008
Resumo:
The concept of domain integral used extensively for J integral has been applied in this work for the formulation of J(2) integral for linear elastic bimaterial body containing a crack at the interface and subjected to thermal loading. It is shown that, in the presence of thermal stresses, the J(k) domain integral over a closed path, which does not enclose singularities, is a function of temperature and body force. A method is proposed to compute the stress intensity factors for bimaterial interface crack subjected to thermal loading by combining this domain integral with the J(k) integral. The proposed method is validated by solving standard problems with known solutions.