997 resultados para Interconnection network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building flexible constraint length Viterbi decoders requires us to be able to realize de Bruijn networks of various sizes on the physically provided interconnection network. This paper considers the case when the physical network is itself a de Bruijn network and presents a scalable technique for realizing any n-node de Bruijn network on an N-node de Bruijn network, where n < N. The technique ensures that the length of the longest path realized on the network is minimized and that each physical connection is utilized to send only one data item, both of which are desirable in order to reduce the hardware complexity of the network and to obtain the best possible performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall performance of a distributed system is often depends on the effectiveness of its interconnection network. Thus, the study of the communication networks for distributed systems is very important, which is the focus of this paper. In particular, we address the problem of fat-tree based interconnection networks performance modeling for multi-user heterogeneous multi-cluster computing systems. To this end, we present an analytical model and validate the model through comprehensive simulation. The results of the simulation demonstrated that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall performance of a distributed system often depends on the effectiveness of its interconnection network. Thus, the study of the communication networks for distributed systems–which is the focus of this paper–is very important. In particular, we address the problem of fat-tree based interconnection networks performance modeling for multi-user heterogeneous multi-cluster computing systems. To this end, we present an analytical model and validate the model through comprehensive simulation. The results of the simulation demonstrate that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions. On the basis of the validated model, we propose an adaptive assignment function based on the existing heterogeneity of the system to minimize multi-user environment overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the simulation and analysis of collisionless optical interconnection network, which the objective is to achieve a high performance level based on a single protocol control. The optical coupler has one shared control channel and N communication channels. Each network node two communication modules one for packet transmission/reception and another for control channel access. We show by simulation that system achieves a high performance and ensures high scalability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-Processor SoC (MPSOC) design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. Scaling down of process technologies has increased process and dynamic variations as well as transistor wearout. Because of this, delay variations increase and impact the performance of the MPSoCs. The interconnect architecture inMPSoCs becomes a single point of failure as it connects all other components of the system together. A faulty processing element may be shut down entirely, but the interconnect architecture must be able to tolerate partial failure and variations and operate with performance, power or latency overhead. This dissertation focuses on techniques at different levels of abstraction to face with the reliability and variability issues in on-chip interconnection networks. By showing the test results of a GALS NoC testchip this dissertation motivates the need for techniques to detect and work around manufacturing faults and process variations in MPSoCs’ interconnection infrastructure. As a physical design technique, we propose the bundle routing framework as an effective way to route the Network on Chips’ global links. For architecture-level design, two cases are addressed: (I) Intra-cluster communication where we propose a low-latency interconnect with variability robustness (ii) Inter-cluster communication where an online functional testing with a reliable NoC configuration are proposed. We also propose dualVdd as an orthogonal way of compensating variability at the post-fabrication stage. This is an alternative strategy with respect to the design techniques, since it enforces the compensation at post silicon stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current nanometer technologies are subjected to several adverse effects that seriously impact the yield and performance of integrated circuits. Such is the case of within-die parameters uncertainties, varying workload conditions, aging, temperature, etc. Monitoring, calibration and dynamic adaptation have appeared as promising solutions to these issues and many kinds of monitors have been presented recently. In this scenario, where systems with hundreds of monitors of different types have been proposed, the need for light-weight monitoring networks has become essential. In this work we present a light-weight network architecture based on digitization resource sharing of nodes that require a time-to-digital conversion. Our proposal employs a single wire interface, shared among all the nodes in the network, and quantizes the time domain to perform the access multiplexing and transmit the information. It supposes a 16% improvement in area and power consumption compared to traditional approaches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of interconnection networks is important because the overall performance of a distributed system is often critically hinged on the effectiveness of its interconnection network. In the mean time, the heterogeneity is one of the most important factors of such systems. This paper addresses the problem of interconnection networks performance modeling of large-scale distributed systems with emphases on heterogeneous multi-cluster computing systems. So, we present an analytical model to predict message latency in multi-cluster systems in the presence of cluster size heterogeneity. The model is validated through comprehensive simulation, which demonstrates that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the problem of interconnection networks performance modeling of large-scale distributed systems with emphases on multi-cluster computing systems. The study of interconnection networks is important because the overall performance of a distributed system is often critically hinged on the effectiveness of its interconnection network. We present an analytical model that considers stochastic quantities as well as processor heterogeneity of the target system. The model is validated through comprehensive simulation, which demonstrates that the proposed model exhibits a good degree of accuracy for various system sizes and under different operating conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The overall performance of a distributed system often depends on the effectiveness of its interconnection network. Thus, the study of the communication networks for distributed systems is very important, which is the focus of this paper. In particular, we address the problem of interconnection networks performance modeling for heterogeneous meta-computing systems. We consider the meta-computing system as a typical multi-cluster system. Since the heterogeneity is becoming common in such systems, we take into account network as well as cluster size heterogeneity to propose the model. To this end, we present an analytical network model and validate the model through comprehensive simulation. The results of the simulation demonstrated that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work shows the design, simulation, and analysis of two optical interconnection networks for a Dataflow parallel computer architecture. To verify the optical interconnection network performance on the Dataflow architecture, we have analyzed the load balancing among the processors during the parallel programs executions. The load balancing is a very important parameter because it is directly associated to the dataflow parallelism degree. This article proves that optical interconnection networks designed with simple optical devices can provide efficiently the dataflow requirements of a high performance communication system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.