927 resultados para Intercellular Signaling Peptides and Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex mechanisms underlying bone remodeling is crucial to the development of novel therapeutics. Glycosaminoglycans (GAGs) localised to the extracellular matrix (ECM) of bone are thought to play a key role in mediating aspects of bone development. The influence of isolated GAGs was studied by utilising in vitro murine calvarial monolayer and organ culture model systems. Addition of GAG preparations extracted from the cell surface of human osteoblasts at high concentrations (5 microg/ml) resulted in decreased proliferation of cells and decreased suture width and number of bone lining cells in calvarial sections. When we investigated potential interactions between the growth factors fibroblast growth factor-2 (FGF2), bone morphogenic protein-2 (BMP2) and transforming growth factor-beta1 (TGFbeta1) and the isolated cell surface GAGs, differences between the two model systems emerged. The cell culture system demonstrated a potentiating role for the isolated GAGs in the inhibition of FGF2 and TGFbeta1 actions. In contrast, the organ culture system demonstrated an enhanced stimulation of TFGbeta1 effects. These results emphasise the role of the ECM in mediating the interactions between GAGs and growth factors during bone development and suggest the GAG preparations contain potent inhibitory or stimulatory components able to mediate growth factor activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stabilizing property of 2,2,2-trifluoroethanol (TFE) in peptides has been widely demonstrated, More recently, TFE has been shown to enhance secondary structure content in globular proteins, and to influence quaternary interactions in protein multimers. The molecular mechanisms by which TFE exerts its Influence on peptide and protein structures remain poorly understood. The present analysis integrates the known physical properties of TFE with a variety of experimental observations on the interaction of TFE with peptides and proteins and on the properties of fluorocarbons. Two features of TFE, namely the hydrophobicity of the trifluoromethyl group and the hydrogen bonding character (strong donor and poor acceptor), emerge as the most important factors for rationalising the observed effects of TFE. A model is proposed for TFE interaction with peptides which involves an initial replacement of the hydration shell by fluoroalcohol molecules, a process driven by apolar interactions and favourable entropy of dehydration. Subsequent bifurcated hydrogen-bond formation with peptide carbonyl groups, which leave intramolecular interactions unaffected, promotes secondary structure formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrapeptide sequences of the type Z-Pro-Y-X were obtained from the crystal structure data on 34 globular proteins, and used in an analysis of the positional preferences of the individual amino acid residues in the β-turn conformation. The effect of fixing proline as the second position residue in the tetrapeptide sequence was studied by comparing the data obtained on the positional preferences with the corresponding data obtained by Chou and Fasman using the Z-R-Y-X sequence, where no particular residue was fixed in any of the four positions. While, in general, several amino acid residues having relatively very high or very low preferences for specific positions were found to be common to both the Z-Pro-Y-X and Z-R-Y-X sequences, many significant differences were found between the two sets of data, which are to be attributed to specific interactions arising from the presence of the proline residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressurized capillary electrochromatography (pCEC) was coupled with electrospray ionization mass spectrometry (ESI-MS) using a coaxial sheath liquid interface. It was used for separation and analysis of peptides and proteins. The effects of organic modifier and applied voltage on separation were investigated, and the effects of pH value of the mobile phase and the concentration of the electrolyte on ESI-MS signal were investigated. The resolution and detection sensitivity with different separation methods (pCEC, capillary high-performance liquid chromatography) coupled on-line with mass spectrometry were compared for the separation of a peptide mixture. To evaluate the feasibility and reliability of the experimental setup of the system, tryptic digests of cytochrome c and modified protein as real samples were analyzed by using pCEC-ESI-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neovascular retinal disease is a leading cause of blindness orchestrated by inflammatory responses. Although noninfectious uveoretinitis is mediated by CD4(+) T cells, in the persistent phase of disease, angiogenic responses are observed, along with degeneration of the retina. Full clinical manifestation relies on myeloid-derived cells, which are phenotypically distinct from, but potentially sharing common effector responses to age-related macular degeneration. To interrogate inflammation-mediated angiogenesis, we investigated experimental autoimmune uveoretinitis, an animal model for human uveitis. After the initial acute phase of severe inflammation, the retina sustains a persistent low-grade inflammation with tissue-infiltrating leukocytes for over 4 months. During this persistent phase, angiogenesis is observed as retinal neovascular membranes that arise from inflamed venules and postcapillary venules, increase in size as the disease progresses, and are associated with infiltrating arginase-1(+) macrophages. In the absence of thrombospondin-1, retinal neovascular membranes are markedly increased and are associated with arginase-1(-) CD68(+) macrophages, whereas deletion of the chemokine receptor CCR2 resulted in reduced retinal neovascular membranes in association with a predominant neutrophil infiltrate. CCR2 is important for macrophage recruitment to the retina in experimental autoimmune uveoretinitis and promotes chronicity in the form of a persistent angiogenesis response, which in turn is regulated by constitutive expression of angiogenic inhibitors like thrombospondin-1. This model offers a new platform to dissect the molecular and cellular pathology of inflammation-induced ocular angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC.

METHODS: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations.

RESULTS: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy.

CONCLUSIONS: High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch signaling is essential for myogenesis and the regenerative potential of skeletal muscle: however, its regulation in human muscle is yet to be fully characterized. Increased expression of Notch3, Jagged1. Hes1, and Hes6 gene transcripts were observed during differentiation of cultured human skeletal muscle cells. Furthermore, significantly lower expressions of Notch1, Jagged1, Numb, and Delta-like 1 were evident in muscle biopsies from older men (60-75 years old) compared to muscle from younger men (18-25 years old). Importantly, with supervised resistance exercise training, expression of Notch1 and Hes6 genes were increased and Delta-like 1 and Numb expression were decreased. The differences in Notch expression between the age groups were no longer evident following training. These results provide further evidence to support the role of Notch in the impaired regulation of muscle mass with age and suggest that some of the benefits provided by resistance training may be mediated through the Notch signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Aging skin is a condition that affects (or will affect) all people, and its treatment is considered a clinical challenge. Growth factors and their analogues are emerging as a promising therapeutic option. Objectives: To evaluate the safety profile of some dermocosmetic products with formulations based on growth factors - or their analogs intended for that purpose - using in vitro human skin cell culture models. Methods: Two types of cell cultures were studied, and the effects of the study products on the proliferation of melanoma cells and normal human fibroblasts were evaluated. Results: No significant morphological alterations were found in the cultured human melanoma, and no significant decrease in the number of healthy cells was verified in the normal fibroblasts culture. In some cases there was even a proliferation of those cells. Conclusions: These preliminary data demonstrate that cosmeceutical products containing growth factors as an active principle can be considered safe for topical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives were to evaluate the role of canonical WNT signaling in development of the preimplantation embryo. Signaling was activated with 2-Amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine (AMBMP) and inhibited with Dickkopf-related protein 1 (DKK1). Treatment of bovine embryos with AMBMP at day 5 after insemination decreased development to the blastocyst stage at day 7 and reduced numbers of trophectoderm and inner cell mass cells. At high concentrations, AMBMP caused disorganization of the inner cell mass. DKK1 blocked actions of AMBMP but did not affect development in the absence of AMBMP. Examination of gene expression in day 6 morulae by microarray revealed expression of 16 WNT genes and other genes involved in WNT signaling; differences in relative expression were confirmed by PCR for 7 genes. In conclusion, the preimplantation embryo possesses a functional WNT signaling system and activation of the canonical pathway can inhibit embryonic development.