998 resultados para Interacts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered expression of the INT6 gene, encoding the e subunit of the translational initiation factor eIF3, occurs in human breast cancers, but how INT6 relates to carcinogenesis remains unestablished. Here, we show that INT6 is involved in the DNA damage response. INT6 was required for cell survival following γ-irradiation and G(2)-M checkpoint control. RNA interference-mediated silencing of INT6 reduced phosphorylation of the checkpoint kinases CHK1 and CHK2 after DNA damage. In addition, INT6 silencing prevented sustained accumulation of ataxia telangiectasia mutated (ATM) at DNA damage sites in cells treated with γ-radiation or the radiomimetic drug neocarzinostatin. Mechanistically, this result could be explained by interaction of INT6 with ATM, which together with INT6 was recruited to the sites of DNA damage. Finally, INT6 silencing also reduced ubiquitylation events that promote retention of repair proteins at DNA lesions. Accordingly, accumulation of the repair factor BRCA1 was defective in the absence of INT6. Our findings reveal unexpected and striking connections of INT6 with ATM and BRCA1 and suggest that the protective action of INT6 in the onset of breast cancers relies on its involvement in the DNA damage response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders’ performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future ‘drink riding’ policy considerations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl– channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 μg/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 μg/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCc1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour suppressors safeguard the fidelity of the mitotic checkpoint by transcriptional regulation of genes that encode components of the mitotic checkpoint complex (MCC). Here we report a new role for the tumour suppressor and transcription factor, WT1, in the mitotic checkpoint. We show that WT1 regulates the MCC by directly interacting with the spindle assembly checkpoint protein, MAD2. WT1 colocalizes with MAD2 during mitosis and preferentially binds to the functionally active, closed-conformer, C-MAD2. Furthermore, WT1 associates with the MCC containing MAD2, BUBR1 and CDC20, resulting in prolonged inhibition of the anaphase-promoting complex/cyclosome (APC/C) and delayed degradation of its substrates SECURIN and CYCLIN B1. Strikingly, RNA interference-mediated depletion of WT1 leads to enhanced turnover of SECURIN, decreased lag time to anaphase and defects in chromosome segregation. Our findings identify WT1 as a regulator of the mitotic checkpoint and chromosomal stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Runx2-Cbfal, a Runt transcription factor, plays important roles during skeletal development. It is required for differentiation and function of osteoblasts. In its absence, chondrocyte hypertrophy is severely impaired and there is no vascularization of cartilage templates during skeletal development. These tissue-specific functions of Runx2 are likely to be dependent on its interaction with other proteins. We have therefore searched for proteins that may modulate the activity of Runx2. The yeast two-hybrid system was used to identify a groucho homologue, Grg5, as a Runx2-interacting protein. Grg5 enhances Runx2 activity in a cell culture-based assay and by analyses of postnatal growth in mice we demonstrate that Grg5 and Runx2 interact genetically. We also show that Runx2 haploinsufficiency in the absence of Grg5 results in a more severe delay in ossification of cranial sutures and fontanels than occurs with Runx2 haploinsufficiency on a wild-type background. Finally, we find shortening of the proliferative and hypertrophic zones, and expansion of the resting zone in the growth plates of Runx2(+/-)Grg5(-/-) mice that are associated with reduced Ihh expression and Indian hedgehog (Ihh) signaling. We therefore conclude that Grg5 enhances Runx2 activity in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the possible role of trans-acting factors interacting with the untranslated regions (UTRs) of coxsackievirus B3 (CVB3) RNA. We show here that polypyrimidine tract-binding protein (PTB) binds specifically to both 5' and 3' UTRs, but with different affinity. We have demonstrated that PTB is a bona fide internal ribosome entry site (IRES) trans-acting factor (ITAF) for CVB3 RNA by characterizing the effect of partial silencing of FIB ex vivo in He La cells. Furthermore, IRES activity in BSC-1 cells, which are reported to have a very low level of endogenous FIB, was found to be significantly lower than that in He La cells. Additionally, we have mapped the putative contact points of PTB on the 5' and 3' UTRs by an RNA toe-printing assay. We have shown that the 3' UTR is able to stimulate CVB3 IRES-mediated translation. Interestingly, a deletion of 15 nt at the 5' end or 14 rut at the 3' end of the CVB3 3' UTR reduced the 3' UTR-mediated enhancement of IRES activity ex vivo significantly, and a reduced interaction was shown with PTB. It appears that the FIB protein might help in circularization of the CVB3 RNA by bridging the ends necessary for efficient translation of the viral RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Methods Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90 degrees light scattering and FtsZ polymer pelleting assays. The gamma 32P-GTP synthesised by NDK from GDP and gamma 32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound P-32-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. Results NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Conclusion Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to -5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy.