968 resultados para Interactive effects
Resumo:
Background and Aims Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua.Methods The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared.Key Results Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes.Conclusions Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua.
Resumo:
The purpose of this study was to determine the relative contributions of psychopathy and self-monitoring to the prediction of self-presentation tactics (behaviours that individuals use to manipulate their self-image). Psychopathy is composed of two main factors: Factor 1, which includes manipulativeness and shallow affect, and Factor 2, which includes irresponsibility and anti-social behaviours. Self-monitoring is a personality trait that distinguishes between those who adapt their behaviour to fit different social situations (high self-monitors) and those who behave as they feel regardless of social expectations (low selfmonitors). It was hypothesized that self-monitoring would moderate the relationship between psychopathy and self-presentation tactics. One hundred and forty-nine university students completed the Self-Monitoring Scale (Snyder, 1974), the Self-Report Psychopathy Scale - Version III (Paulhus et aI., in press), the Self-Presentation Tactics scale (Lee, S., et aI., 1999), the HEXACO-PI (a measure ofthe six major factors of personality; Lee, K., & Ashton, 2004), and six scenarios that were created as a supplementary measure of the selfpresentation tactics. Results of the hierarchical multiple regression analyses showed that self-monitoring did moderate the relationship between psychopathy and three of the selfpresentation tactics: apologies, disclaimers, and exemplification. Further, significant interactions were observed between Factor 1 and self-monitoring on apologies and the defensive tactics subscale, between Factor 2 and self-monitoring on self-handicapping, and between Factor 1 and Factor 2 on exemplification. Contrary to expectations, the main effect of self-monitoring was significant for the prediction of nine tactics, while psychopathy was significant for the prediction of seven tactics. This indicates that the role of these two personality traits in the explanation of self-presentation tactics tends to be additive in nature rather than interactive. In addition. Factor 2 alone did not account for a significant amount of variance in any of the tactics, while Factor 1 significantly predicted nine tactics. Results are discussed with regard to implications and possible directions for future research.
Resumo:
The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.
Resumo:
Two fish species, one top predator (Imparfinis mirini) and one intermediate detritivorous species (Hisonotus depressicauda), were experimentally manipulated to evaluate their relative importance in structuring the periphytic community, as well as their effects on the other trophic levels. An enclosure experiment was conducted in the Potreirinho creek, a second order tributary of Paranapanema River, SE Brazil. Five treatments were used: enclosure of the predator species. enclosure of the detritivorous species, enclosure of both together, exclusion of all fish species (closed control cage), and cage open to all fish community, (open control). Through direct and indirect effects, I. mirini, when alone gave rise to a trophic cascade that resulted in a positive effect on algal resources. Through direct effects, H. depressicauda. when alone, reduced the amount of organic matter, resulting in a positive indirect effect on algae. In addition, when the two species were enclosed together, only the effects determined by the detritivorous species were present. The results indicate the important role of the intermediate detritivorous species in the maintenance of the composition and trophic structure of the analyzed community by reducing the effects caused by the top predator.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are the most frequent conditions leading to elevated liver enzymes and liver cirrhosis, respectively, in the Western world. However, despite strong epidemiological evidence for combined effects on the progression of liver injury, the mutual interaction of the pathophysiological mechanisms is incompletely understood. The aim of this study was to establish and analyze an experimental murine model, where we combined chronic alcohol administration with a NASH-inducing high-fat (HF) diet.
Resumo:
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.
Resumo:
Rising levels of atmospheric CO2 lead to acidification of the ocean and alter seawater carbonate chemistry, which can negatively impact calcifying organisms, including mollusks. In estuaries, exposure to elevated CO2 levels often co-occurs with other stressors, such as reduced salinity, which enhances the acidification trend, affects ion and acid-base regulation of estuarine calcifiers and modifies their response to ocean acidification. We studied the interactive effects of salinity and partial pressure of CO2 (PCO2) on biomineralization and energy homeostasis in juveniles of the eastern oyster, Crassostrea virginica, a common estuarine bivalve. Juveniles were exposed for 11 weeks to one of two environmentally relevant salinities (30 or 15 PSU) either at current atmospheric PCO2 (400 µatm, normocapnia) or PCO2 projected by moderate IPCC scenarios for the year 2100 (700-800 µatm, hypercapnia). Exposure of the juvenile oysters to elevated PCO2 and/or low salinity led to a significant increase in mortality, reduction of tissue energy stores (glycogen and lipid) and negative soft tissue growth, indicating energy deficiency. Interestingly, tissue ATP levels were not affected by exposure to changing salinity and PCO2, suggesting that juvenile oysters maintain their cellular energy status at the expense of lipid and glycogen stores. At the same time, no compensatory upregulation of carbonic anhydrase activity was found under the conditions of low salinity and high PCO2. Metabolic profiling using magnetic resonance spectroscopy revealed altered metabolite status following low salinity exposure; specifically, acetate levels were lower in hypercapnic than in normocapnic individuals at low salinity. Combined exposure to hypercapnia and low salinity negatively affected mechanical properties of shells of the juveniles, resulting in reduced hardness and fracture resistance. Thus, our data suggest that the combined effects of elevated PCO2 and fluctuating salinity may jeopardize the survival of eastern oysters because of weakening of their shells and increased energy consumption.
Resumo:
Due to the ongoing effects of climate change, phytoplankton are likely to experience enhanced irradiance, more reduced nitrogen, and increased water acidity in the future ocean. Here, we used Thalassiosira pseudonana as a model organism to examine how phytoplankton adjust energy production and expenditure to cope with these multiple, interrelated environmental factors. Following acclimation to a matrix of irradiance, nitrogen source, and CO2 levels, the diatom's energy production and expenditures were quantified and incorporated into an energetic budget to predict how photosynthesis was affected by growth conditions. Increased light intensity and a shift from inline image to inline image led to increased energy generation, through higher rates of light capture at high light and greater investment in photosynthetic proteins when grown on inline image. Secondary energetic expenditures were adjusted modestly at different culture conditions, except that inline image utilization was systematically reduced by increasing pCO2. The subsequent changes in element stoichiometry, biochemical composition, and release of dissolved organic compounds may have important implications for marine biogeochemical cycles. The predicted effects of changing environmental conditions on photosynthesis, made using an energetic budget, were in good agreement with observations at low light, when energy is clearly limiting, but the energetic budget over-predicts the response to inline image at high light, which might be due to relief of energetic limitations and/or increased percentage of inactive photosystem II at high light. Taken together, our study demonstrates that energetic budgets offered significant insight into the response of phytoplankton energy metabolism to the changing environment and did a reasonable job predicting them.
Resumo:
Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.
Resumo:
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.