927 resultados para Interactive Educational tools
Resumo:
Understanding the functioning of brains is an extremely challenging endeavour - both for researches as well as for students. Interactive media and tools, like simulations, databases and visualizations or virtual laboratories proved to be not only indispensable in research but also in education to help understanding brain function. Accordingly, a wide range of such media and tools are now available and it is getting increasingly difficult to see an overall picture. Written by researchers, tool developers and experienced academic teachers, this special issue of Brains, Minds & Media covers a broad range of interactive research media and tools with a strong emphasis on their use in neural and cognitive sciences education. The focus lies not only on the tools themselves, but also on the question of how research tools can significantly enhance learning and teaching and how a curricular integration can be achieved. This collection gives a comprehensive overview of existing tools and their usage as well as the underlying educational ideas and thus provides an orientation guide not only for teaching researchers but also for interested teachers and students.
Resumo:
This paper presents interactive simulation tools to support the enhancement of power electronics education considering DC to DC converters. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive visualization of simulations in steady-state for idealized non-isolated DC to DC converters. Additionally, this paper discusses the features and the usage of the interactive educational tools to serve as a first design tool for the laboratory experiments in the power electronics courses. In this way, some results were confronted with a well-known simulator package and with experimental results in order to validate the developed interactive simulation tools.
Resumo:
This paper presents the analysis and evaluation of the Power Electronics course at So Paulo State University-UNESP-Campus of Ilha Solteira(SP)-Brazil, which includes the usage of interactive Java simulations tools and an educational software to aid the teaching of power electronic converters. This platform serves as an oriented course for the lectures and supplementary support for laboratory experiments in the power electronics courses. The simulation tools provide an interactive and dynamic way to visualize the power electronics converters behavior together with the educational software, which contemplates the theory and a list of subjects for circuit simulations. In order to verify the performance and the effectiveness of the proposed interactive educational platform, it is presented a statistical analysis considering the last three years. © 2011 IEEE.
Resumo:
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.
Resumo:
Good cooperation between farrier, veterinarian and horse owner is an important prerequisite for optimal support of the horse with regards to shoeing and hoof health. The introduction of a joint educational aid aims to improve the level of education of both veterinarians and farriers. The interactive, multimedia approach represents an innovative new dimension in instruction techniques, predominantly provided through images and videos. The contents of the new teaching aid will focus on detailed anatomy of the foot and distal limb, as well as currently accepted shoeing practices and techniques and pathologic conditions of the hoof and foot.
Resumo:
ModelDB's mission is to link computational models and publications, supporting the field of computational neuroscience (CNS) by making model source code readily available. It is continually expanding, and currently contains source code for more than 300 models that cover more than 41 topics. Investigators, educators, and students can use it to obtain working models that reproduce published results and can be modified to test for new domains of applicability. Users can browse ModelDB to survey the field of computational neuroscience, or pursue more focused explorations of specific topics. Here we describe tutorials and initial experiences with ModelDB as an interactive educational tool.
Resumo:
In this work, educational software for intuitive understanding of the basic dynamic processes of semiconductor lasers is presented. The proposed tool is addressed to the students of optical communication courses, encouraging self consolidation of the subjects learned in lectures. The semiconductor laser model is based on the well known rate equations for the carrier density, photon density and optical phase. The direct modulation of the laser is considered with input parameters which can be selected by the user. Different options for the waveform, amplitude and frequency of thpoint. Simulation results are plotted for carrier density and output power versus time. Instantaneous frequency variations of the laser output are numerically shifted to the audible frequency range and sent to the computer loudspeakers. This results in an intuitive description of the “chirp” phenomenon due to amplitude-phase coupling, typical of directly modulated semiconductor lasers. In this way, the student can actually listen to the time resolved spectral content of the laser output. By changing the laser parameters and/or the modulation parameters,consequent variation of the laser output can be appreciated in intuitive manner. The proposed educational tool has been previously implemented by the same authors with locally executable software. In the present manuscript, we extend our previous work to a web based platform, offering improved distribution and allowing its use to the wide audience of the web.
Resumo:
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi–walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbons’ Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International’s FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through–plane and in–plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in–plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through–plane and in–plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single–filler formulations. For thermal conductivity, Nielsen’s model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen’s model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.
Resumo:
This paper deals with the usage of interactive simulations tools to serve as an oriented design tool for the lectures and laboratory experiments in the power electronics courses. A dynamic and interactive visualization of simulations for idealized converters in steady state are provided by the proposed educational tools, allowing students to acquire qualification in non-isolated DC-DC converters, without previous circuitry knowledge, either without the usage of sophisticated simulation packages. The interaction with proposed simulation tools can be accomplished by student using direct or graphic mode. In direct mode the parameters related with the design of converter can be inserted simply editing default values presented in textboxes, while in the graphic mode students interact indirectly with design information by manipulating visual widgets. In order to corroborate the proposed interactive simulation tools, comparisons of results from buck-boost and boost converters on proposed tools and a well-known simulator package with those on experimental evaluation from laboratory classes were presented. © 2009 IEEE.
Resumo:
This chapter reports on Australian and Swedish experiences in the iterative design, development, and ongoing use of interactive educational systems we call ‘Media Maps.’ Like maps in general, Media Maps are usefully understood as complex cultural technologies; that is, they are not only physical objects, tools and artefacts, but also information creation and distribution technologies, the use and development of which are embedded in systems of knowledge and social meaning. Drawing upon Australian and Swedish experiences with one Media Map technology, this paper illustrates this three-layered approach to the development of media mapping. It shows how media mapping is being used to create authentic learning experiences for students preparing for work in the rapidly evolving media and communication industries. We also contextualise media mapping as a response to various challenges for curriculum and learning design in Media and Communication Studies that arise from shifts in tertiary education policy in a global knowledge economy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Interactive educational courseware has been adopted in diverse education sectors such as primary, secondary, tertiary education, vocational and professional training. In Malaysian educational context, the ministry of education has implemented Smart School Project that aims to increase high level of academic achievement in primary and secondary schools by using interactive educational courseware. However, many researchers have reported that many coursewares fail to accommodate the learner and teacher needs. In particular, the interface design is not appropriately designed in terms of quality of learning. This paper reviews educational courseware development process in terms of defining quality of interface design and suggests a conceptual model of interface design through the integration of design components and interactive learning experience into the development process. As a result, it defines the concept of interactive learning experience in a more practical approach in order to implement each stage of the development process in a seamless and integrated way.
Resumo:
Interactive educational courseware has been adopted in diverse education sectors such as primary, secondary, tertiary education, vocational and professional training. In Malaysian educational context, the ministry of education has implemented Smart School Project that aims to increase high level of academic achievement in primary and secondary schools by using interactive educational courseware. However, many researchers have reported that many coursewares fail to accommodate the learner and teacher needs. In particular, the interface design is not appropriately designed in terms of quality of learning. This paper reviews educational courseware development process in terms of defining quality of interface design and suggests a conceptual model of interface design through the integration of design components and interactive learning experience into the development process. As a result, it defines the concept of interactive learning experience in a more practical approach in order to implement each stage of the development process in a seamless and integrated way.
Resumo:
The promotion of resilience (the capacity of an individual or community to bounce back and recover from adversity) has become an important area of public health. In recent years it has expanded into the digital domain, and many online applications have been developed to promote children's resilience. In this study, it is argued that the majority of existing applications are limited because they take a didactic approach, and conceive of interaction as providing navigational choices. Because they simply provide information about resilience or replicate offline, scenario-based strategies, the understanding of resilience they provide is confined to a few, predetermined factors. In this study I propose a new, experiential approach to promoting resilience digitally. I define resilience as an emergent, situated and context-specific phenomenon. Using a Participatory Design model in combination with a salutogenic (strength-based) health methodology, this project has involved approximately 50 children as co-designers and co-researchers over two years. The children have contributed to the design of a new set of interactive resilience tools, which facilitate resilience promotion through dialogic and experiential learning. The major outcomes of this study include a new methodology for developing digital resilience tools, a new set of tools that have been developed and evaluated in collaboration with children and a set of design principles to guide future development. Beyond these initial and tangible outcomes, this study has also established that the benefits of introducing Participatory Design into a health promoting model rests primarily in the change of the role of children from "users" of technology and education to co-designers, where they assume a leadership role in both designing the tools and in directing their resilience learning.