943 resultados para Intense Interval Exercise
Resumo:
This study investigated the influence of two different intensities of acute interval exercise on food preferences and appetite sensations in overweight and obese men. Twelve overweight/obese males (age=29.0±4.1 years; BMI =29.1±2.4 kg/m2) completed three exercise sessions: an initial graded exercise test, and two interval cycling sessions: moderate-(MIIT) and high-intensity (HIIT) interval exercise sessions on separate days in a counterbalanced order. The MIIT session involved cycling for 5-minute repetitions of alternate workloads 20% below and 20% above maximal fat oxidation. The HIIT session consisted of cycling for alternate bouts of 15 seconds at 85% VO2max and 15 seconds unloaded recovery. Appetite sensations and food preferences were measured immediately before and after the exercise sessions using the Visual Analogue Scale and the Liking & Wanting experimental procedure. Results indicated that liking significantly increased and wanting significantly decreased in all food categories after both MIIT and HIIT. There were no differences between MIIT and HIIT on the effect on appetite sensations and Liking & Wanting. In conclusion, manipulating the intensity of acute interval exercise did not affect appetite and nutrient preferences.
Resumo:
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate the following: 1) the effects of continuous exercise training and interval exercise training on the end-tidal carbon dioxide pressure (PETCO2) response during a graded exercise test in patients with coronary artery disease; and 2) the effects of exercise training modalities on the association between PETCO2 at the ventilatory anaerobic threshold (VAT) and indicators of ventilatory efficiency and cardiorespiratory fitness in patients with coronary artery disease. METHODS: Thirty-seven patients (59.7 +/- 1.7 years) with coronary artery disease were randomly divided into two groups: continuous exercise training (n = 20) and interval exercise training (n = 17). All patients performed a graded exercise test with respiratory gas analysis before and after three months of the exercise training program to determine the VAT, respiratory compensation point (RCP) and peak oxygen consumption. RESULTS: After the interventions, both groups exhibited increased cardiorespiratory fitness. Indeed, the continuous exercise and interval exercise training groups demonstrated increases in both ventilatory efficiency and PETCO2 values at VAT, RCP, and peak of exercise. Significant associations were observed in both groups: 1) continuous exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.49; PETCO(2)VAT and ventilatory efficiency r = -0.80) and 2) interval exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.39; PETCO(2)VAT and ventilatory efficiency r = -0.45). CONCLUSIONS: Both exercise training modalities showed similar increases in PETCO2 levels during a graded exercise test in patients with coronary artery disease, which may be associated with an improvement in ventilatory efficiency and cardiorespiratory fitness.
Resumo:
Tennis played at an elite level requires intensive training characterized by repeated bouts of brief intermittent high intensity exercise over relatively long periods of time (1 - 3 h or more). Competition can place additional stress on players. The purpose of this study was to investigate the temporal association between specific components of tennis training and competition, the incidence of upper respiratory tract infections (URT1), and salivary IgA, in a cohort of seventeen elite female tennis players. Timed, whole unstimulated saliva samples were collected before and after selected 1-h training sessions at 2 weekly intervals, over 12 weeks. Salivary IgA concentration was measured by ELISA and IgA secretion rate calculated (mug IgA x ml(-1) x ml saliva x min(-1)). Players reported URTI symptoms and recorded training and competition in daily logs. Data analysis showed that higher incidence of URTI was significantly associated with increased training duration and load, and competition level, on a weekly basis. Salivary IgA secretion rate (S-IgA) dropped significantly after 1 hour of tennis play. Over the 12-week period, pre-exercise salivary IgA concentration and secretion rate were directly associated with the amount of training undertaken during the previous day and week (p < 0.05). However, the decline in S-IgA after 1 h of intense tennis play was also positively related to the duration and load of training undertaken during the previous day and week (p < 0.05). Although exercise-induced suppression of salivary IgA may be a risk factor, it could not accurately predict the occurrence of URTI in this cohort of athletes.
Resumo:
The increasing prevalence of obesity in society has been associated with a number of atherogenic risk factors such as insulin resistance. Aerobic training is often recommended as a strategy to induce weight loss, with a greater impact of high-intensity levels on cardiovascular function and insulin sensitivity, and a greater impact of moderate-intensity levels on fat oxidation. Anaerobic high-intensity (supramaximal) interval training has been advocated to improve cardiovascular function, insulin sensitivity and fat oxidation. However, obese individuals tend to have a lower tolerance of high-intensity exercise due to discomfort. Furthermore, some obese individuals may compensate for the increased energy expenditure by eating more and/or becoming less active. Recently, both moderate- and high-intensity aerobic interval training have been advocated as alternative approaches. However, it is still uncertain as to which approach is more effective in terms of increasing fat oxidation given the issues with levels of fitness and motivation, and compensatory behaviours. Accordingly, the objectives of this thesis were to compare the influence of moderate- and high-intensity interval training on fat oxidation and eating behaviour in overweight/obese men. Two exercise interventions were undertaken by 10-12 overweight/obese men to compare their responses to study variables, including fat oxidation and eating behaviour during moderate- and high-intensity interval training (MIIT and HIIT). The acute training intervention was a methodological study designed to examine the validity of using exercise intensity from the graded exercise test (GXT) - which measured the intensity that elicits maximal fat oxidation (FATmax) - to prescribe interval training during 30-min MIIT. The 30-min MIIT session involved 5-min repetitions of workloads 20% below and 20% above the FATmax. The acute intervention was extended to involve HIIT in a cross-over design to compare the influence of MIIT and HIIT on eating behaviour using subjective appetite sensation and food preference through the liking and wanting test. The HIIT consisted of 15-sec interval training at 85 %VO2peak interspersed by 15-sec unloaded recovery, with a total mechanical work equal to MIIT. The medium term training intervention was a cross-over 4-week (12 sessions) MIIT and HIIT exercise training with a 6-week detraining washout period. The MIIT sessions consisted of 5-min cycling stages at ±20% of mechanical work at 45 %VO2peak, and the HIIT sessions consisted of repetitive 30-sec work at 90 %VO2peak and 30-sec interval rests, during identical exercise sessions of between 30 and 45 mins. Assessments included a constant-load test (45 %VO2peak for 45 mins) followed by 60-min recovery at baseline and the end of 4-week training, to determine fat oxidation rate. Participants’ responses to exercise were measured using blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) and were measured during the constant-load test and in the first intervention training session of every week during training. Eating behaviour responses were assessed by measuring subjective appetite sensations, liking and wanting and ad libitum energy intake. Results of the acute intervention showed that FATmax is a valid method to estimate VO2 and BLa, but is not valid to estimate HR and RPE in the MIIT session. While the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax (0.16 ±0.09 and 0.14 ±0.08 g/min, respectively), fat oxidation was significantly higher at minute 25 of MIIT (P≤0.01). In addition, there was no significant difference between MIIT and HIIT in the rate of appetite sensations after exercise, but there was a tendency towards a lower rate of hunger after HIIT. Different intensities of interval exercise also did not affect explicit liking or implicit wanting. Results of the medium-term intervention indicated that current interval training levels did not affect body composition, fasting insulin and fasting glucose. Maximal aerobic capacity significantly increased (P≤0.01) (2.8 and 7.0% after MIIT and HIIT respectively) during GXT, and fat oxidation significantly increased (P≤0.01) (96 and 43% after MIIT and HIIT respectively) during the acute constant-load exercise test. RPE significantly decreased after HIIT greater than MIIT (P≤0.05), and the decrease in BLa was greater during the constant-load test after HIIT than MIIT, but this difference did not reach statistical significance (P=0.09). In addition, following constant-load exercise, exercise-induced hunger and desire to eat decreased after HIIT greater than MIIT but were not significant (p value for desire to eat was 0.07). Exercise-induced liking of high-fat sweet (HFSW) and high-fat non-sweet (HFNS) foods increased after MIIT and decreased after HIIT (p value for HFNS was 0.09). The intervention explained 12.4% of the change in fat intake (p = 0.07). This research is significant in that it confirmed two points in the acute study. While the rate of fat oxidation increased during MIIT, the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax. In addition, manipulating the intensity of acute interval exercise did not affect appetite sensations and liking and wanting. In the medium-term intervention, constant-load exercise-induced fat oxidation significantly increased after interval training, independent of exercise intensity. In addition, desire to eat, explicit liking for HFNS and fat intake collectively confirmed that MIIT is accompanied by a greater compensation of eating behaviour than HIIT. Findings from this research will assist in developing exercise strategies to provide obese men with various training options. In addition, the finding that overweight/obese men expressed a lower RPE and decreased BLa after HIIT compared with MIIT is contrary to the view that obese individuals may not tolerate high-intensity interval training. Therefore, high-intensity interval training can be advocated among the obese adult male population. Future studies may extend this work by using a longer-term intervention.
Resumo:
Purpose The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE). Methods Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m2) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test. Results There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05). Conclusion Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.
Resumo:
Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes. Purpose We investigated the time course of changes in the expression and tissue localization of several key chemotactic factors in skeletal muscle during the early phase of recovery following resistance exercise. Methods Muscle biopsy samples were obtained from vastus lateralis of eight untrained men (22+-0.5 yrs) before and 2, 4 and 24 h after three sets of leg press, squat and leg extension at 80% 1 RM. Results Monocyte chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial space between muscle fibers and, in some cases, were co-localized with CD68+ macrophages, PAX7+ satellite cells and blood vessels. However, the patterns of staining were inconclusive and not consistent. Conclusion In conclusion, resistance exercise stimulated a marked increase in the mRNA and protein expression of various chemotactic factors in skeletal muscle. Myofibers were not the dominant source of these factors. These findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle during the early phase of recovery following resistance exercise.
Resumo:
A low-impact, high-intensity interval exercise (HIE) bout was used to determine whether an association exists between cytokines and bone turnover markers following an acute bout of exercise. Twenty-three recreationally active males (21.8±2.4yr) performed a single HIE bout on a cycle ergometer at 90% relative intensity. Venous blood samples were collected prior to exercise, 5-minutes, 1-hour, and 24-hours post-exercise, and were analyzed for serum levels of pro-inflammatory (IL-6, IL-1α, IL-1β, and TNF-α) and anti- inflammatory cytokines (IL-10) and markers of bone formation (BAP, OPG) and resorption (NTX, RANKL). Significant effects were observed with all bone markers, especially 5-minutes post-exercise with BAP, OPG, and RANKL increasing from baseline (p<0.05). Significant effects were also observed for IL-1α, IL-1β, IL-6, and TNF-α (p<0.00, p=0.04, p=0.03, p<0.00). In addition, post-exercise changes in NTX, BAP, and OPG were significantly correlated pro- and anti-inflammatory cytokines, suggesting that an interaction exists between the immune and skeletal response to exercise.
Resumo:
This study aimed at evaluating the thermographic changes associated with localized exercise in young and elderly subjects. An exercise protocol using 1 kg load was applied during 3 min to the knee flexors of 14 elderly (67 +/- 5 years) and 15 young (23 +/- 2 years) healthy subjects. The posterior thigh`s skin temperature of the exercised limb and contralateral limb were measured by infrared thermography on pre-exercise, immediately post-exercise, and during the 10-min period post-exercise. Difference (p < 0.01) between elderly and young subjects was observed on pre-exercise temperature. Although differences were not observed between pre-exercise and immediately post-exercise temperature in the exercised limb, thermographic profile displayed heat concentration in exercised areas for both groups. Temperature reduction was only observed for the young group on the 10-min post-exercise (p < 0.05) in the exercised limb (30.7 +/- 1.7 to 30.3 +/- 1.5 degrees C). In contrast, there was a temperature reduction post-exercise (p < 0.01) in the contralateral limb for both groups. These results present new evidences that elderly and young subjects display similar capacity of heat production; however, the elderly subjects presented a lower resting temperature and slower heat dissipation. This work contributes to improve the understanding about temperature changes in elderly subjects and may present implications to the sports and rehabilitation programs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To compare two modalities of exercise training (i.e., Endurance Training [ET] and High-Intensity Interval Training [HIT]) on health-related parameters in obese children aged between 8 and 12 years. Methods: Thirty obese children were randomly allocated into either the ET or HIT group. The ET group performed a 30 to 60-minute continuous exercise at 80% of the peak heart rate (HR). The HIT group training performed 3 to 6 sets of 60-s sprint at 100% of the peak velocity interspersed by a 3-min active recovery period at 50% of the exercise velocity. HIT sessions last similar to 70% less than ET sessions. At baseline and after 12 weeks of intervention, aerobic fitness, body composition and metabolic parameters were assessed. Results: Both the absolute (ET: 26.0%; HIT: 19.0%) and the relative VO2 peak (ET: 13.1%; HIT: 14.6%) were significantly increased in both groups after the intervention. Additionally, the total time of exercise (ET: 19.5%; HIT: 16.4%) and the peak velocity during the maximal graded cardiorespiratory test (ET: 16.9%; HIT: 13.4%) were significantly improved across interventions. Insulinemia (ET: 29.4%; HIT: 30.5%) and HOMA-index (ET: 42.8%; HIT: 37.0%) were significantly lower for both groups at POST when compared to PRE. Body mass was significantly reduced in the HIT (2.6%), but not in the ET group (1.2%). A significant reduction in BMI was observed for both groups after the intervention (ET: 3.0%; HIT: 5.0%). The responsiveness analysis revealed a very similar pattern of the most responsive variables among groups. Conclusion: HIT and ET were equally effective in improving important health related parameters in obese youth.
Resumo:
[EN] In the present study, we have investigated the effect of carbohydrate and protein hydrolysate ingestion on muscle glycogen resynthesis during 4 h of recovery from intense cycle exercise. Five volunteers were studied during recovery while they ingested, immediately after exercise, a 600-ml bolus and then every 15 min a 150-ml bolus containing 1) 1.67 g. kg body wt(-1). l(-1) of sucrose and 0.5 g. kg body wt(-1). l(-1) of a whey protein hydrolysate (CHO/protein), 2) 1.67 g. kg body wt(-1). l(-1) of sucrose (CHO), and 3) water. CHO/protein and CHO ingestion caused an increased arterial glucose concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually with no measurable glucose uptake observed at 3 h of recovery. Leg glucose uptake was rather constant at 0.9 mmol/min with CHO/protein and CHO ingestion, and insulin levels were stable at 70, 45, and 5 mU/l for CHO/protein, CHO, and water ingestion, respectively. Glycogen resynthesis rates were 52 +/- 7, 48 +/- 5, and 18 +/- 6 for the first 1.5 h of recovery and decreased to 30 +/- 6, 36 +/- 3, and 8 +/- 6 mmol. kg dry muscle(-1). h(-1) between 1.5 and 4 h for CHO/protein, CHO, and water ingestion, respectively. No differences could be observed between CHO/protein and CHO ingestion ingestion. It is concluded that coingestion of carbohydrate and protein, compared with ingestion of carbohydrate alone, did not increase leg glucose uptake or glycogen resynthesis rate further when carbohydrate was ingested in sufficient amounts every 15 min to induce an optimal rate of glycogen resynthesis.
Resumo:
CHAPTER II - This study evaluated the effects of two different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of two types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29 ± 0.1 to 2.33 ± 0.09 after MICE and from 2.30 ± 0.08 to 2.23 ± 0.12 after HIIE. In MICE has occurred an increase in the mean corpuscular volume, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected the erythrocyte osmotic stability, which increased after MICE and decreased after HIIE.
Resumo:
L'entraînement par intervalles à haute intensité est plus efficace que l'entraînement continu d’intensité modérée pour améliorer la consommation maximale d’oxygène (VO2max) et le profil métabolique des patients coronariens. Cependant, il n’y a pas de publications pour appuyer la prescription d’un type d’exercice intermittent (HIIE) spécifique dans cette population. Nous avons donc comparé les réponses aiguës cardio-pulmonaires de quatre sessions différentes d’exercice intermittent dans le but d’identifier l’exercice optimal chez les patients coronariens. De manière randomisée, les sujets participaient aux sessions d’HIIE, toutes avec des phases d’exercice à 100% de la puissance maximale aérobie (PMA), mais qui variaient selon la durée des phases d’exercice et de récupération (15s ou 1 min) et la nature de la récupération (0% de la PMA ou 50% de la PMA). Chaque session était réalisée sous forme de temps limite et l’exercice était interrompu après 35 minutes. En considérant l’effort perçu, le confort du patient et le temps passé au-dessus de 80% de VO2max, nous avons trouvé que l’exercice optimal consistait à alterner des courtes phases d’exercice de 15s à 100% de la PMA avec des phases de 15s de récupération passive. Ensuite, nous avons comparé les réponses physiologiques de l’HIIE optimisé avec un exercice continu d’intensité modérée (MICE) iso-calorique chez des patients coronariens. En considérant les réponses physiologiques, l’aspect sécuritaire (aucune élévation de Troponin T) et l’effort perçu, le protocole HIIE est apparu mieux toléré et plus efficace chez ces coronariens. Finalement, une simple session d’HIIE n’induit pas d’effets délétères sur la paroi vasculaire, comme démontré avec l’analyse des microparticules endothéliales. En conclusion, l’exercice intermittent à haute intensité est un mode d'entraînement prometteur pour les patients coronariens stables qui devrait faire l’objet d’autres études expérimentales en particulier pour les patients coronariens ischémiques.