955 resultados para Intelligent Agents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se propone el uso de agentes inteligentes en entornos de aprendizaje en línea con el fin de mejorar la asistencia y motivación del estudiante a través de contenidos personalizados que tienen en cuenta el estilo de aprendizaje del estudiante y su nivel de conocimiento. Los agentes propuestos se desempeñan como asistentes personales que ayudan al estudiante a llevar a cabo las actividades de aprendizaje midiendo su progreso y motivación. El entorno de agentes se construye a través de una arquitectura multiagente llamada MASPLANG diseñada para dar soporte adaptativo (presentación y navegación adaptativa) a un sistema hipermedia educativo desarrollado en la Universitat de Girona para impartir educación virtual a través del web. Un aspecto importante de esta propuesta es la habilidad de construir un modelo de estudiante híbrido que comienza con un modelo estereotípico del estudiante basado en estilos de aprendizaje y se modifica gradualmente a medida que el estudiante interactúa con el sistema (gustos subjetivos). Dentro del contexto de esta tesis, el aprendizaje se define como el proceso interno que, bajo factores de cambio resulta en la adquisición de la representación interna de un conocimiento o de una actitud. Este proceso interno no se puede medir directamente sino a través de demostraciones observables externas que constituyen el comportamiento relacionado con el objeto de conocimiento. Finalmente, este cambio es el resultado de la experiencia o entrenamiento y tiene una durabilidad que depende de factores como la motivación y el compromiso. El MASPLANG está compuesto por dos niveles de agentes: los intermediarios llamados IA (agentes de información) que están en el nivel inferior y los de Interfaz llamados PDA (agentes asistentes) que están en el nivel superior. Los agentes asistentes atienden a los estudiantes cuando trabajan con el material didáctico de un curso o una lección de aprendizaje. Esta asistencia consiste en la recolección y análisis de las acciones de los estudiantes para ofrecer contenidos personalizados y en la motivación del estudiante durante el aprendizaje mediante el ofrecimiento de contenidos de retroalimentación, ejercicios adaptados al nivel de conocimiento y mensajes, a través de interfaces de usuario animadas y atractivas. Los agentes de información se encargan del mantenimiento de los modelos pedagógico y del dominio y son los que están en completa interacción con las bases de datos del sistema (compendio de actividades del estudiante y modelo del dominio). El escenario de funcionamiento del MASPLANG está definido por el tipo de usuarios y el tipo de contenidos que ofrece. Como su entorno es un sistema hipermedia educativo, los usuarios se clasifican en profesores quienes definen y preparan los contenidos para el aprendizaje adaptativo, y los estudiantes quienes llevan a cabo las actividades de aprendizaje de forma personalizada. El perfil de aprendizaje inicial del estudiante se captura a través de la evaluación del cuestionario ILS (herramienta de diagnóstico del modelo FSLSM de estilos de aprendizaje adoptado para este estudio) que se asigna al estudiante en su primera interacción con el sistema. Este cuestionario consiste en un conjunto de preguntas de naturaleza sicológica cuyo objetivo es determinar los deseos, hábitos y reacciones del estudiante que orientarán la personalización de los contenidos y del entorno de aprendizaje. El modelo del estudiante se construye entonces teniendo en cuenta este perfil de aprendizaje y el nivel de conocimiento obtenido mediante el análisis de las acciones del estudiante en el entorno.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this paper proposes 'Intelligent Agents', a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing systems? How can autonomic computing approaches be extended towards building reliable systems? How can existing technologies be merged to provide a solution for self-managing systems? The work reported in this paper aims to answer these questions by proposing Swarm-Array Computing, a novel technique inspired from swarm robotics and built on the foundations of autonomic and parallel computing paradigms. Two approaches based on intelligent cores and intelligent agents are proposed to achieve autonomy in parallel computing systems. The feasibility of the proposed approaches is validated on a multi-agent simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – To describe some research done, as part of an EPSRC funded project, to assist engineers working together on collaborative tasks. Design/methodology/approach – Distributed finite state modelling and agent techniques are used successfully in a new hybrid self-organising decision making system applied to collaborative work support. For the particular application, analysis of the tasks involved has been performed and these tasks are modelled. The system then employs a novel generic agent model, where task and domain knowledge are isolated from the support system, which provides relevant information to the engineers. Findings – The method is applied in the despatch of transmission commands within the control room of The National Grid Company Plc (NGC) – tasks are completed significantly faster when the system is utilised. Research limitations/implications – The paper describes a generic approach and it would be interesting to investigate how well it works in other applications. Practical implications – Although only one application has been studied, the methodology could equally be applied to a general class of cooperative work environments. Originality/value – One key part of the work is the novel generic agent model that enables the task and domain knowledge, which are application specific, to be isolated from the support system, and hence allows the method to be applied in other domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the fact that there is a need to apply autonomic computing concepts to parallel computing systems. Advancing on prior work based on intelligent cores [36], a swarm-array computing approach, this paper focuses on ‘Intelligent agents’ another swarm-array computing approach in which the task to be executed on a parallel computing core is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and is seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed swarm-array computing approach is validated on a multi-agent simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported in this paper proposes ‘Intelligent Agents’, a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the important goals of the intelligent buildings especially in commercial applications is not only to minimize the energy consumption but also to enhance the occupant’s comfort. However, most of current development in the intelligent buildings focuses on an implementation of the automatic building control systems that can support energy efficiency approach. The consideration of occupants’ preferences is not adequate. To improve occupant’s wellbeing and energy efficiency in intelligent environments, we develop four types of agent combined together to form a multi-agent system to control the intelligent buildings. Users’ preferential conflicts are discussed. Furthermore, a negotiation mechanism for conflict resolution, has been proposed in order to reach an agreement, and has been represented in syntax directed translation schemes for future implementation and testing. Keywords: conflict resolution, intelligent buildings, multi-agent systems (MAS), negotiation strategy, syntax directed translation schemes (SDTS).