849 resultados para Inteligência artificial - Engenharia de Aplicações
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os smart grids representam a nova geração dos sistemas elétricos de potência, combinando avanços em computação, sistemas de comunicação, processos distribuídos e inteligência artificial para prover novas funcionalidades quanto ao acompanhamento em tempo real da demanda e do consumo de energia elétrica, gerenciamento em larga escala de geradores distribuídos, entre outras, a partir de um sistema de controle distribuído sobre a rede elétrica. Esta estrutura modifica profundamente a maneira como se realiza o planejamento e a operação de sistemas elétricos nos dias de hoje, em especial os de distribuição, e há interessantes possibilidades de pesquisa e desenvolvimento possibilitada pela busca da implementação destas funcionalidades. Com esse cenário em vista, o presente trabalho utiliza uma abordagem baseada no uso de sistemas multiagentes para simular esse tipo de sistema de distribuição de energia elétrica, considerando opções de controle distintas. A utilização da tecnologia de sistemas multiagentes para a simulação é baseada na conceituação de smart grids como um sistema distribuído, algo também realizado nesse trabalho. Para validar a proposta, foram simuladas três funcionalidades esperadas dessas redes elétricas: classificação de cargas não-lineares; gerenciamento de perfil de tensão; e reconfiguração topológica com a finalidade de reduzir as perdas elétricas. Todas as modelagens e desenvolvimentos destes estudos estão aqui relatados. Por fim, o trabalho se propõe a identificar os sistemas multiagentes como uma tecnologia a ser empregada tanto para a pesquisa, quanto para implementação dessas redes elétricas.
Resumo:
Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino da Matemática, Universidade de Lisboa, Instituto de Educação, 2014
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
A comparação de dados de mercado é o método mais empregado em avaliação de imóveis. Este método fundamenta-se na coleta, análise e modelagem de dados do mercado imobiliário. Porém os dados freqüentemente contêm erros e imprecisões, além das dificuldades de seleção de casos e atributos relevantes, problemas que em geral são solucionados subjetivamente. Os modelos hedônicos de preços têm sido empregados, associados com a análise de regressão múltipla, mas existem alguns problemas que afetam a precisão das estimativas. Esta Tese investigou a utilização de técnicas alternativas para desenvolver as funções de preparação dos dados e desenvolvimento de modelos preditivos, explorando as áreas de descobrimento de conhecimento e inteligência artificial. Foi proposta uma nova abordagem para as avaliações, consistindo da formação de uma base de dados, ampla e previamente preparada, com a aplicação de um conjunto de técnicas para seleção de casos e para geração de modelos preditivos. Na fase de preparação dos dados foram utilizados as técnicas de regressão e redes neurais para a seleção de informação relevante, e o algoritmo de vizinhança próxima para estimação de valores para dados com erros ou omissões. O desenvolvimento de modelos preditivos incluiu as técnicas de regressão com superficies de resposta, modelos aditivos generalizados ajustados com algoritmos genéticos, regras extraídas de redes neurais usando lógica difusa e sistemas de regras difusas obtidos com algoritmos genéticos, os quais foram comparados com a abordagem tradicional de regressão múltipla Esta abordagem foi testada através do desenvolvimento de um estudo empírico, utilizando dados fornecidos pela Prefeitura Municipal de Porto Alegre. Foram desenvolvidos três formatos de avaliação, com modelos para análise de mercado, avaliação em massa e avaliação individual. Os resultados indicaram o aperfeiçoamento da base de dados na fase de preparação e o equilíbrio das técnicas preditivas, com um pequeno incremento de precisão, em relação à regressão múltipla.Os modelos foram similares, em termos de formato e precisão, com o melhor desempenho sendo atingido com os sistemas de regras difusas.
Resumo:
Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.
Resumo:
Neste documento, são investigados vários métodos usados na inteligência artificial, com o objetivo de obter previsões precisas da evolução dos mercados financeiros. O uso de ferramentas lineares como os modelos AR, MA, ARMA e GARCH têm muitas limitações, pois torna-se muito difícil adaptá-los às não linearidades dos fenómenos que ocorrem nos mercados. Pelas razões anteriormente referidas, os algoritmos como as redes neuronais dinâmicas (TDNN, NARX e ESN), mostram uma maior capacidade de adaptação a estas não linearidades, pois não fazem qualquer pressuposto sobre as distribuições de probabilidade que caracterizam estes mercados. O facto destas redes neuronais serem dinâmicas, faz com que estas exibam um desempenho superior em relação às redes neuronais estáticas, ou outros algoritmos que não possuem qualquer tipo de memória. Apesar das vantagens reveladas pelas redes neuronais, estas são um sistema do tipo black box, o que torna muito difícil extrair informação dos pesos da rede. Isto significa que estes algoritmos devem ser usados com precaução, pois podem tornar-se instáveis.
Resumo:
Uma atividade com a magnitude da avicultura, que usa equipamentos de última geração e serviços atualizados, é levada, na maioria dos casos, a tomar decisões que envolvem todos aspectos de produção, apoiada em critérios subjetivos. A presente tese objetivou estudar a utilização das redes neurais artificiais na estimação dos parâmetros de desempenho de matrizes pesadas, pertencentes a uma integração avícola sul-brasileira. Foram utilizados os registros de 11 lotes em recria, do período compreendido entre 09/11/97 a 10/01/99 e de 21 lotes em produção, do período compreendido entre 26/04/98 a 19/12/99, para a análise por redes neurais artificiais. Os dados utilizados corresponderam a 273 linhas de registros semanais, do período de recria e 689 linhas de registros semanais, do período de produção. Os modelos de redes neurais foram comparados e selecionados como melhores, baseados no coeficiente de determinação múltipla (R2), Quadrado Médio do Erro (QME), bem como pela análise de gráficos, plotando a predição da rede versus a predição menos o real (resíduo). Com esta tese foi possível explicar os parâmetros de desempenho de matrizes pesadas, através da utilização de redes neurais artificiais. A técnica permite a tomada de decisões por parte do corpo técnico, baseadas em critérios objetivos obtidos cientificamente. Além disso, este método permite simulações das conseqüências de tais decisões e fornece a percentagem de contribuição de cada variável no fenômeno em estudo.
Resumo:
Estudamos e propusemos uma solução para o caso específico do índice Bovespa (fechamento) à vista. Utilizamos técnicas de inteligência artificial, estudando modelos pouco estruturados para a análise de tendências de alta ou queda deste índice. Modelo matemático aliado às técnicas de IA é comparado e integrado, procurando adequar às necessidades de análise na área de negócios.
Resumo:
A inteligência tem sido estudada como fruto de evolução biológica. Nas últimas centenas de milhões de anos, a inteligência tem evoluído juntamente com a biologia. Essa conclusão pode ser obtida ao analisar o comportamento das criaturas que emergiram assim como a sua capacidade de armazenar e processar informação. A evolução gerou criaturas possuidoras de cérebros com grande poder de adaptação. Partindo-se do pressuposto que a inteligência humana é resultado de um processo evolutivo paulatino que ocorreu ao longo de milhões de anos, faz sentido tentar repetir os mesmos passos dados ao longo da evolução da inteligência artificialmente. A evolução oferece uma rota que vai desde tipos de mentes simples até tipos de mentes mais complexas apresentando um caminho de características e capacidades que evoluíram ao longo do tempo. No presente trabalho, acredita-se que esse caminho seguido pela evolução é uma boa fonte de inspiração para a geração de inteligência artificial. De acordo com Dennett, um tipo de mente que apareceu ao longo da evolução é a mente popperiana que aprende as regras do ambiente e tem a capacidade de imaginar ou planejar estados futuros permitindo que ela se adapte com facilidade a novas e inesperadas situações. Sendo assim, modela-se e implementa-se um agente popperiano capaz de aprender as regras do seu ambiente e planejar ações futuras baseando-se no seu aprendizado. Por fim, são implementados dois protótipos de agentes popperianos para resolver problemas distintos e observa-se a capacidade dos agentes popperianos em se adaptar às condições do seu meio para alcançar seus objetivos.
Resumo:
Este estudo objetivou demonstrar que é possível explicar os fenômenos que ocorrem na criação de frangos de corte através de redes neurais artificiais. A estatística descritiva e a diferença entre as médias das variáveis dos dados iniciais foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foi utilizada uma série histórica de dados de produção de frangos de corte, obtidos nos anos de 2001 e 2002, fornecidos por uma Integração Avícola do Rio Grande do Sul, contendo informações de 1.516 criadores com lotes alojados em 2001 e 889 criadores com lotes alojados em 2002. Nos arquivos estavam registrados, para cada lote, suas variáveis de produção, tais como número do lote, data do alojamento, data do abate, idade ao abate, número de pintos alojados, quilogramas de ração consumidos, quilogramas de frangos produzidos, número de aves abatidas, custo do frango produzido, mortalidade, peso médio, ganho de peso diário, índice de conversão alimentar, índice de eficiência, quilogramas líquido de frangos, quilogramas de ração inicial, quilogramas de ração crescimento, quilogramas de ração abate, além de outros. Para a construção das redes neurais artificiais foi utilizado o programa computacional NeuroShell®Predictor, desenvolvido pela Ward Systems Group. Ao programa foi identificado as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e a variável de “saída” aquela a ser predita. Para o treinamento das redes foram usados 1.000 criadores do banco de dados do alojamento de frangos de corte de 2001. Os restantes 516 criadores de 2001 e todos os 889 criadores de 2002 serviram para a validação das predições, os quais não participaram da etapa de aprendizagem, sendo totalmente desconhecidos pelo programa. Foram gerados 20 modelos na fase de treinamento das redes neurais artificiais, com distintos parâmetros de produção ou variáveis (saídas). Em todos estes modelos, as redes neurais artificiais geradas foram bem ajustadas apresentando sempre, um Coeficiente de Determinação Múltipla (R²) elevado e o menor Quadrado Médio do Erro (QME). Ressalta-se que o R² perfeito é 1 e um coeficiente muito bom deve estar próximo de 1. Todos os 20 modelos, quando validados com os 516 lotes de 2001 e com 889 de 2002, apresentaram também Coeficientes de Determinação Múltipla (R²) elevados e muito próximos de 1, além de apresentarem o Quadrado Médio do Erro (QME) e Erro Médio reduzidos. Foi comprovado não haver diferenças significativas entre as médias dos valores preditos e as médias dos valores reais, em todas as validações efetuadas nos lotes abatidos em 2001 e em 2002, quando aplicados os 20 modelos de redes neurais gerados. Como conclusão, as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos com a produção industrial de frangos de corte. A técnica oferece critérios objetivos, gerados cientificamente, que embasarão as decisões dos responsáveis pela produção industrial de frangos de corte.Também permite realizar simulações e medir a contribuição de cada variável no fenômeno em estudo.
Resumo:
O objetivo deste trabalho é apresentar a base teórica para o problema de aprendizagem através de exemplos conforme as ref. [14], [15] e [16]. Aprender através de exemplos pode ser examinado como o problema de regressão da aproximação de uma função multivaluada sobre um conjunto de dados esparsos. Tal problema não é bem posto e a maneira clássica de resolvê-lo é através da teoria de regularização. A teoria de regularização clássica, como será considerada aqui, formula este problema de regressão como o problema variacional de achar a função f que minimiza o funcional Q[f] = 1 n n Xi=1 (yi ¡ f(xi))2 + ¸kfk2 K; onde kfk2 K é a norma em um espa»co de Hilbert especial que chamaremos de Núcleo Reprodutivo (Reproducing Kernel Hilbert Spaces), ou somente RKHS, IH definido pela função positiva K, o número de pontos do exemplo n e o parâmetro de regularização ¸. Sob condições gerais a solução da equação é dada por f(x) = n Xi=1 ciK(x; xi): A teoria apresentada neste trabalho é na verdade a fundamentação para uma teoria mais geral que justfica os funcionais regularizados para a aprendizagem através de um conjunto infinito de dados e pode ser usada para estender consideravelmente a estrutura clássica a regularização, combinando efetivamente uma perspectiva de análise funcional com modernos avanços em Teoria de Probabilidade e Estatística.