974 resultados para Integrable Spin Chains


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi abbiamo presentato il calcolo dell’Entropia di Entanglement di un sistema quantistico unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS, il cui punto critico é una realizzazione su reticolo di tutti i modelli conformi minimali. Sfruttando l’integrabilitá di questi modelli, abbiamo svolto il calcolo utilizzando la tecnica delle Corner Transfer Matrices (CTM). Il risultato ottenuto si discosta leggermente dalla previsione di J. Cardy e P. Calabrese ricavata utilizzando la teoria dei campi conformi descriventi il punto critico. Questa differenza é stata imputata alla non-unitarietá del modello studiato, in quanto la tecnica CTM studia il ground state, mentre la previsione di Cardy e Calabrese si focalizza sul vuoto conforme del modello: nel caso dei sistemi non-unitari questi due stati non coincidono, ma possono essere visti come eccitazioni l’uno dell’altro. Dato che l’Entanglement é un fenomeno genuinamente quantistico e il modello RSOS descrive un sistema statistico classico bidimensionale, abbiamo proposto una Hamiltoniana quantistica unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrable open-boundary conditions for the Bariev model of three coupled one-dimensional XY spin chains are studied in the framework of the boundary quantum inverse scattering method. Three kinds of diagonal boundary K-matrices leading to nine classes of possible choices of boundary fields are found and the corresponding integrable boundary terms are presented explicitly. The boundary Hamiltonian is solved by using the coordinate Bethe ansatz technique and the Bethe ansatz equations are derived. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions, We illustrate how this general formalism applier; to construct multiparametric versions of the supersymmetric t-J and Li models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrable open-boundary conditions for the model of three coupled one-dimensional XY spin chains are considered in the framework of the quantum inverse scattering method. The diagonal boundary K-matrices are found and a class of integrable boundary terms is determined. The boundary model Hamiltonian is solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general prescription for the construction of integrable one-dimensional systems with closed boundary conditions and quantum supersymmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a nonlocal functional of the exchange interaction for the ground-state energy of quantum spin chains described by the Heisenberg Hamiltonian. An alternating chain is used to obtain the correlation energy and a local unit-cell approximation is defined in the context of the density-functional theory. The agreement with our exact numerical data, for small chains, is significantly better than a previous formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. The results can be particularly relevant in the study of finite spin-1/2 Heisenberg chains, with exchange couplings changing, magnitude, or even sign, from bond-to-bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral properties and phase diagram of the exactly integrable spin-1 quantum chain introduced by Alcaraz and Bariev are presented. The model has a U(1) symmetry and its integrability is associated with an unknown R-matrix whose dependence on the spectral parameters is not of a different form. The associated Bethe ansatz equations that fix the eigenspectra are distinct from those associated with other known integrable spin models. The model has a free parameter t(p). We show that at the special point t(p) = 1, the model acquires an extra U(1) symmetry and reduces to the deformed SU(3) Perk-Schultz model at a special value of its anisotropy q = exp(i2 pi/3) and in the presence of an external magnetic field. Our analysis is carried out either by solving the associated Bethe ansatz equations or by direct diagonalization of the quantum Hamiltonian for small lattice sizes. The phase diagram is calculated by exploring the consequences of conformal invariance on the finite-size corrections of the Hamiltonian eigenspectrum. The model exhibits a critical phase ruled by the c = 1 conformal field theory separated from a massive phase by first-order phase transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the influence of ferromagnetic and antiferromagnetic bond defects on the ground-state energy of antiferromagnetic spin chains. In the absence of translational invariance, the energy spectrum of the full Hamiltonian is obtained numerically, by an iterative modi. cation of the power algorithm. In parallel, approximate analytical energies are obtained from a local-bond approximation, proposed here. This approximation results in significant improvement upon the mean-field approximation, at negligible extra computational effort. (C) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve the spectrum of the closed Temperley-Lieb quantum spin chains using the coordinate Bethe ansatz. These models are invariant under the quantum group U-q[sl(2)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renyi and von Neumann entropies quantifying the amount of entanglement in ground states of critical spin chains are known to satisfy a universal law which is given by the conformal field theory (CFT) describing their scaling regime. This law can be generalized to excitations described by primary fields in CFT, as was done by Alcaraz et al in 2011 (see reference [1], of which this work is a completion). An alternative derivation is presented, together with numerical verifications of our results in different models belonging to the c = 1, 1/2 universality classes. Oscillations of the Renyi entropy in excited states are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).