92 resultados para Intégralité quantique
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Ce travail de maîtrise a mené à la rédaction d'un article (Physical Review A 80, 062319 (2009)).
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés.
Resumo:
La notion de causalité repose sur une grande prétention : rendre intelligibles l’origine, la constitution et le devenir du monde. On lui attribue donc une portée universelle : tout événement a une cause. La majeure partie des débats philosophiques sur la causalité a concerné nos jugements intuitifs selon deux types de conceptions causales, soit la conception probabiliste et la conception processuelle. Chacune d’elles fait face à d’importants obstacles conceptuels dont les principaux sont la préemption, l’inaboutissement (fizzling), la déconnexion et la méconnexion. Or, afin de rendre compte de certains phénomènes physiques et d’éviter le problème classique des régularités fallacieuses – comme quoi, par exemple, la chute du baromètre ne saurait être la cause de la tempête – l’approche processuelle est généralement privilégiée. Max Kistler (1998 ; 2006), entre autres, offre ainsi une théorie causale processuelle basée sur la notion de transfert d’énergie. Cependant, les cas paradigmatiques d’intrication quantique imposent de sérieuses contraintes aux approches processuelles, dont celle de Kistler.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
info:eu-repo/semantics/published