947 resultados para Insulin Gene
Resumo:
The β cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in β cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated β cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line αTC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed βTC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed β cells.
Resumo:
Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.
Resumo:
Currently available treatments for insulin-dependent diabetes mellitus are often inadequate in terms of both efficacy and patient compliance. Gene therapy offers the possibility of a novel and improved method by which exogenous insulin can be delivered to a patient. This was approached in the present study by constructing a novel insulin-secreting cell line. For the purposes of this work immortalized cell lines were used. Fibroblasts and pituitary cells were transfected with the human preproisinulin gene to create stable lines of proinsulin- and insulin-secreting cells. The effect of known β-cell secretagogues on these cells were investigated, and found mostly to have no stimulatory effect, although IBMX, arginine and ZnSO4 each increased the rate of secretion. Cyclosporin (CyA) is currently the immunosuppresant of choice for transplant recipients; the effect of this treatment on endogenous β-cell function was assessed both in vivo and in vitro. Therapeutic doses of CyA were found to reduce plasma insulin concentrations and to impair glucose tolerance. The effect of immunoisolation on insulin release by HIT T15 cells was also investigated. The presence of an alginate membrane was found to severely impair insulin release. For the first implantation of the insulin-secreting cells, the animal model selected was the athymic nude mouse. This animal is immunoincompetent, and hence the use of an immunosuppressive regimen is circumvented. Graft function was assessed by measurement of plasma human C peptide concentrations, using a highly specific assay. Intraperitoneal implantation of genetically manipulated insulin-secreting pituitary cells into nude mice subsequently treated with a large dose of streptozotocin (STZ) resulted in a significantly delayed onset of hyperglycaemia when compared to control animals. Consumption of a ZnSO4 solution was shown to increase human C peptide release by the implant. Ensuing studies in nude mice examined the efficacy of different implantation sites, and included histochemical examination of the tumours. Aldehyde fuchsin staining and immunocytochemical processing demonstrated the presence of insulin containing cells within the excised tissue. Following initial investigations in nude mice, implantation studies were performed in CyA-immunosuppressed normal and STZ-diabetic mice. Graft function was found to be less efficacious, possibly due to the subcutaneous implantation site, or to the immunosuppresive regimen. Histochemical and transmission electron microscopic analysis of the tumour-like cell clusters found at autopsy revealed necrosis of cells at the core, but essentially normal cell morphology, with dense secretory granules in peripheral cells. The thesis provides evidence that gene therapy offers a feasibly new approach to insulin delivery.
Resumo:
Insulin has cardiovascular actions and patients with essential hypertension display insulin resistance. A cross-sectional study of the R1 RFLP of the insulin receptor gene (INSR) was carried out in 67 hypertensive (HT) and 75 normotensive (NT) subjects whose parents had a similar blood pressure status at age ≥50. The frequency of the minor (+) allele was 0.31 in HTs and 0.44 in NTs, and the difference between observed alleles in all subjects in each group was significant (χ2 = 4.8, P<0.05). Allele frequencies of a BglI RFLP of the insulin gene, however, did not differ between the HT and NT groups. The data thus provide evidence in favour of an association of HT with a polymorphism at the INSR locus (19p 13.3-13.2), so implicating this locus, and possibly a genetic variant of the insulin receptor itself, in HT.
Resumo:
Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic beta cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.
Resumo:
Variations in the interleukin 4 receptor A (IL4RA) gene have been reported to be associated with atopy, asthma, and allergy, which may occur less frequently in subjects with type 1 diabetes (T1D). Since atopy shows a humoral immune reactivity pattern, and T1D results from a cellular (T lymphocyte) response, we hypothesised that alleles predisposing to atopy could be protective for T1D and transmitted less often than the expected 50% from heterozygous parents to offspring with T1D. We genotyped seven exonic single nucleotide polymorphisms (SNPs) and the -3223 C>T SNP in the putative promoter region of IL4RA in up to 3475 T1D families, including 1244 Finnish T1D families. Only the -3223 C>T SNP showed evidence of negative association (P=0.014). There was some evidence for an interaction between -3233 C>T and the T1D locus IDDM2 in the insulin gene region (P=0.001 in the combined and P=0.02 in the Finnish data set). We, therefore, cannot rule out a genetic effect of IL4RA in T1D, but it is not a major one.
Resumo:
Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.
Resumo:
Type 1 diabetes (T1D) is a multifactorial autoimmune disease, with strong genetic component. Several susceptibility loci contribute to genetic predisposition to T1D. One of these loci have been mapped to chromosome 1q42 in UK and US joined affected family data sets but needs to be replicated in other populations. In this study, we evaluated sixteen microsatellites located on 1q42 for linkage with T1D in 97 Russian affected sibling pairs. A 2.7-cm region of suggestive linkage to T1D between markers D1S1644 and D1S225 was found by multipoint linkage analysis. The peak of linkage was shown for D1S2847 (P = 0.0005). Transmission disequilibrium test showed significant undertransmission of the 156-bp allele of D1S2847 from parents to diabetic children (28 transmissions vs. 68 nontransmissions, P = 0.043) in Russian affected families. A preferential transmission from parents to diabetic offspring was also shown for the T(-25) and T1362 alleles of the C/T(-25) and C/T1362 dimorphisms, both located at the TAF5L gene, which is situated 103 kb from D1S2847. Together with the A/C744 TAF5L SNP, these markers share common T(-25)/A744/T1362 and C(-25)/C744/T1362 haplotypes associated with higher and lower risk of diabetes (Odds Ratio = 2.15 and 0.62, respectively). Our results suggest that the TAF5L gene, encoding TAF5L-like RNA polymerase II p300/CBP associated factor (PCAF)-associated factor, could represent the susceptibility gene for T1D on chromosome 1q42 in Russian affected patients.
Resumo:
Le diabète de type 2 (DT2) est caractérisé par une résistance des tissus périphériques à l’action de l’insuline et par une insuffisance de la sécrétion d’insuline par les cellules β du pancréas. Différents facteurs tels que le stress du réticulum endoplasmique (RE) et l’immunité innée affectent la fonction de la cellule β-pancréatique. Toutefois, leur implication dans la régulation de la transcription du gène de l’insuline demeure imprécise. Le but de cette thèse était d’identifier et de caractériser le rôle du stress du RE et de l’immunité innée dans la régulation de la transcription du gène de l’insuline. Les cellules β-pancréatiques ont un RE très développé, conséquence de leur fonction spécialisée de biosynthèse et de sécrétion d’insuline. Cette particularité les rend très susceptible au stress du RE qui se met en place lors de l’accumulation de protéines mal repliées dans la lumière du RE. Nous avons montré qu’ATF6 (de l’anglais, activating transcription factor 6), un facteur de transcription impliqué dans la réponse au stress du RE, lie directement la boîte A5 de la région promotrice du gène de l’insuline dans les îlots de Langerhans isolés de rat. Nous avons également montré que la surexpression de la forme active d’ATF6α, mais pas ATF6β, réprime l’activité du promoteur de l’insuline. Toutefois, la mutation ou l’absence de la boîte A5 ne préviennent pas l’inhibition de l’activité promotrice du gène de l’insuline par ATF6. Ces résultats montrent qu’ATF6 se lie directement au promoteur du gène de l’insuline, mais que cette liaison ne semble pas contribuer à son activité répressive. Il a été suggéré que le microbiome intestinal joue un rôle dans le développement du DT2. Les patients diabétiques présentent des concentrations plasmatiques élevées de lipopolysaccharides (LPS) qui affectent la fonction de la cellule β-pancréatique. Nous avons montré que l’exposition aux LPS entraîne une réduction de la transcription du gène de l’insuline dans les îlots de Langerhans de rats, de souris et humains. Cette répression du gène de l’insuline par les LPS est associée à une diminution des niveaux d’ARNms de gènes clés de la cellule β-pancréatique, soit PDX-1 (de l’anglais, pancreatic duodenal homeobox 1) et MafA (de l’anglais, mammalian homologue of avian MafA/L-Maf). En utilisant un modèle de souris déficientes pour le récepteur TLR4 (de l’anglais, Toll-like receptor), nous avons montré que les effets délétères des LPS sur l’expression du gène de l’insuline sollicitent le récepteur de TLR4. Nous avons également montré que l’inhibition de la voie NF-kB entraîne une restauration des niveaux messagers de l’insuline en réponse à une exposition aux LPS dans les îlots de Langerhans de rat. Ainsi, nos résultats montrent que les LPS inhibent le gène de l’insuline dans les cellules β-pancréatiques via un mécanisme moléculaire dépendant du récepteur TLR4 et de la voie NF-kB. Ces observations suggèrent ainsi un rôle pour le microbiome intestinal dans la fonction de la cellule β du pancréas. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la répression du gène de l'insuline en réponse aux divers changements survenant de façon précoce dans l’évolution du diabète de type 2 et d'identifier des cibles thérapeutiques potentielles qui permettraient de prévenir ou ralentir la détérioration de l'homéostasie glycémique au cours de cette maladie, qui affecte plus de deux millions de Canadiens.
Resumo:
Le diabète de type 2 (DT2) se caractérise par une production insuffisante d'insuline par le pancréas ainsi qu'une résistance des tissus périphériques à l'action de l'insuline. Dans les cellules bêta pancréatiques, le glucose stimule la production de l'insuline en induisant la transcription de son gène et la traduction ainsi que la sécrétion de sa protéine. Paradoxalement, une exposition prolongée et simultanée de ces cellules à de hautes concentrations de glucose en présence d'acides gras conduit à la détérioration de la fonction bêta pancréatique et au développement du DT2. Toutefois, les mécanismes moléculaires responsables de ces effets du glucose ne sont que partiellement connus. L'objectif du travail décrit dans cette thèse est d'identifier les mécanismes responsables de la régulation de la transcription du gène de l'insuline. PDX-1 (de l’anglais pour pancreatic and duodenal homeobox 1) est un facteur de transcription majeur et essentiel tant pour le développement du pancréas que pour le maintien de sa fonction à l'état adulte. En réponse au glucose, PDX-1 se lie au promoteur du gène de l'insuline et induit sa transcription. Ceci est inhibé par l'acide gras palmitate. Dans la première partie des travaux effectués dans le cadre de cette thèse, nous avons identifié deux mécanismes de régulation de la transcription du gène de l'insuline: le premier via ERK1/2 (de l'anglais pour extracellular-signal-regulated protein kinases 1 and 2) et le second par l’enzyme PASK (pour per-arnt-sim kinase). Nous avons également mis en évidence l'existence d'un troisième mécanisme impliquant l'inhibition de l'expression du facteur de transcription MafA par le palmitate. Nos travaux indiquent que la contribution de la signalisation via PASK est majeure. L'expression de PASK est augmentée par le glucose et inhibée par le palmitate. Sa surexpression dans les cellules MIN6 et les îlots isolés de rats, mime les effets du glucose sur l'expression du gène de l'insuline ainsi que sur l'expression de PDX-1 et prévient les effets délétères du palmitate. Dans la deuxième partie de la thèse, nous avons identifié un nouveau mécanisme par lequel PASK augmente la stabilité protéique de PDX-1, soit via la phosphorylation et l'inactivation de la protéine kinase GSK3 bêta (de l'anglais pour glycogen synthase kinase 3 beta). Le glucose induit la translocation de PDX-1 du cytoplasme vers le noyau, ce qui est essentiel à sa liaison au promoteur de ses gènes cibles. L'exclusion nucléaire de PDX-1 a été observée dans plusieurs modèles ex vivo et in vivo de dysfonction de la cellule bêta pancréatique. Dans le dernier volet de cette thèse, nous avons démontré l'importance de l'utilisation de cellules primaires (îlots isolés et dispersés) pour étudier la translocation nucléaire de PDX-1 endogène étant donné que ce mode de régulation est absent dans les lignées insulino-sécrétrices MIN6 et HIT-T15. Ces études nous ont permis d'identifier et de mieux comprendre les mécanismes régulant la transcription du gène de l'insuline via le facteur de transcription PDX-1. Les cibles moléculaires ainsi identifiées pourraient contribuer au développement de nouvelles approches thérapeutiques pour le traitement du diabète de type 2. Mots-clés : Diabète, îlots de Langerhans, cellule bêta pancréatique, gène de l'insuline, PDX-1, PASK, GSK3 bêta, ERK1/2, PKB, glucose, palmitate.
Resumo:
In the present study, the initial phase was directed to confirm the effects of curcumin and vitamin D3 in preventing or delaying diabetes onset by studying the blood glucose and insulin levels in the pre-treated and diabetic groups. Behavioural studies were conducted to evaluate the cognitive and motor function in experimental rats. The major focus of the study was to understand the cellular and neuronal mechanisms that ensure the prophylactic capability of curcumin and vitamin D3. To elucidate the mechanisms involved in conferring the antidiabetogenesis effect, we examined the DNA and protein profiles using radioactive incorporation studies for DNA synthesis, DNA methylation and protein synthesis. Furthermore the gene expression studies of Akt-1, Pax, Pdx-1, Neuro D1, insulin like growth factor-1 and NF-κB were done to monitor pancreatic beta cell proliferation and differentiation. The antioxidant and antiapoptotic actions of curcumin and vitamin D3 were examined by studying the expression of antioxidant enzymes - SOD and GPx, and apoptotic mediators like Bax, caspase 3, caspase 8 and TNF-α. In order to understand the signalling pathways involved in curcumin and vitamin D3 action, the second messengers, cAMP, cGMP and IP3 were studied along with the expression of vitamin D receptor in the pancreas. The neuronal regulation of pancreatic beta cell maintenance, proliferation and insulin release was studied by assessing the adrenergic and muscarinic receptor functional regulation in the pancreas, brain stem, hippocampus and hypothalamus. The receptor number and binding affinity of total muscarinic, muscarinic M1, muscarinic M3, total adrenergic, α adrenergic and β adrenergic receptor subtypes were studied in pancreas, brain stem and hippocampus of experimental rats. The mRNA expression of muscarinic and adrenergic receptor subtypes were determined using Real Time PCR. Immunohistochemistry studies using confocal microscope were carried out to confirm receptor density and gene expression results. Cell signalling alterations in the pancreas and brain regions associated with diabetogenesis and antidiabetogenesis were assessed by examining the gene expression profiles of vitamin D receptor, CREB, phospholipase C, insulin receptor and GLUT. This study will establish the anti-diabetogenesis activity of curcumin and vitamin D3 pre-treatment and will attempt to understand the cellular, molecular and neuronal control mechanism in the onset of diabetes.Administration of MLD-STZ to curcumin and vitamin D3 pre-treated rats induced only an incidental prediabetic condition. Curcumin and vitamin D3 pretreated groups injected with MLD-STZ exhibited improved circulating insulin levels and behavioural responses when compared to MLD-STZ induced diabetic group. Activation of beta cell compensatory response induces an increase in pancreatic insulin output and beta cell mass expansion in the pre-treated group. Cell signalling proteins that regulate pancreatic beta cell survival, insulin release, proliferation and differentiation showed a significant increase in curcumin and vitamin D3 pre-treated rats. Marked decline in α2 adrenergic receptor function in pancreas helps to relent sympathetic inhibition of insulin release. Neuronal stimulation of hyperglycemia induced beta cell compensatory response is mediated by escalated signalling through β adrenergic, muscarinic M1 and M3 receptors. Pre-treatment mediated functional regulation of adrenergic and cholinergic receptors, key cell signalling proteins and second messengers improves pancreatic glucose sensing, insulin gene expression, insulin secretion, cell survival and beta cell mass expansion in pancreas. Curcumin and vitamin D3 pre-treatment induced modulation of adrenergic and cholinergic signalling in brain stem, hippocampus and hypothalamus promotes insulin secretion, beta cell compensatory response, insulin sensitivity and energy balance to resist diabetogenesis. Pre-treatment improved second messenger levels and the gene expression of intracellular signalling molecules in brain stem, hippocampus and hypothalamus, to retain a functional neuronal response to hyperglycemia. Curcumin and vitamin D3 protect pancreas and brain regions from oxidative stress by their indigenous antioxidant properties and by their ability to stimulate cellular free radical defence system. The present study demonstrates the role of adrenergic and muscarinic receptor subtypes functional regulation in curcumin and vitamin D3 mediated anti-diabetogenesis. This will have immense clinical significance in developing effective strategies to delay or prevent the onset of diabetes.
Resumo:
The human insulin gene enhancer-binding protein islet-1 (ISL1) is a transcription factor involved in the differentiation of the neuroendocrine pancreatic cells. Recent studies identified ISL1 as a marker for pancreatic well-differentiated neuroendocrine neoplasms. However, little is known about ISL1 expression in pancreatic poorly differentiated and in extrapancreatic well and poorly differentiated neuroendocrine neoplasms. We studied the immunohistochemical expression of ISL1 in 124 neuroendocrine neoplasms. Among pancreatic neuroendocrine neoplasms, 12/13 with poor differentiation were negative, whereas 5/7 with good differentiation but a Ki67 >20% were positive. In extrapancreatic neuroendocrine neoplasms, strong positivity was found in Merkel cell carcinomas (25/25), pulmonary small cell neuroendocrine carcinomas (21/23), medullary thyroid carcinomas (9/9), paragangliomas/pheochromocytomas (6/6), adrenal neuroblastomas (8/8) and head and neck neuroendocrine carcinomas (4/5), whereas no or only weak staining was recorded in pulmonary carcinoids (3/15), olfactory neuroblastomas (1/4) and basaloid head and neck squamous cell carcinomas (0/15). ISL1 stained the neuroendocrine carcinoma component of 5/8 composite carcinomas and also normal neuroendocrine cells in the thyroid, adrenal medulla, stomach and colorectum. Poorly differentiated neuroendocrine neoplasms, regardless of their ISL1 expression, were usually TP53 positive. Our results show the almost ubiquitous expression of ISL1 in extrapancreatic poorly differentiated neuroendocrine neoplasms and neuroblastic malignancies and its common loss in pancreatic poorly differentiated neuroendocrine neoplasms. These findings modify the role of ISL1 as a marker for pancreatic neuroendocrine neoplasms and suggest that ISL1 has a broader involvement in differentiation and growth of neuroendocrine neoplasms than has so far been assumed.
Resumo:
Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage.
Resumo:
A novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken. In contrast to human relaxin-1 and relaxin-2, however, relaxin-3 could not be successfully prepared by simple combination of the individual chains, thus necessitating recourse to the use of a regioselective disulfide bond formation strategy. Solid phase synthesis of the separate, selectively S-protected A and B chains followed by their purification and the subsequent stepwise formation of each of the three disulfides led to the successful acquisition of human relaxin-3. Comprehensive chemical characterization confirmed both the correct chain orientation and the integrity of the synthetic product. Relaxin-3 was found to bind to and activate native relaxin receptors in vitro and stimulate water drinking through central relaxin receptors in vivo. Recent studies have demonstrated that relaxin-3 will bind to and activate human LGR7, but not LGR8, in vitro. Secondary structural analysis showed it to adopt a less ordered confirmation than either relaxin-1 or relaxin-2, reflecting the presence in the former of a greater percentage of nonhelical forming amino acids. NMR spectroscopy and simulated annealing calculations were used to determine the three-dimensional structure of relaxin-3 and to identify key structural differences between the human relaxins.