1000 resultados para Instream flow
Resumo:
The Western United States can best be described as a vast, varying land, with the high plains to the east and the jagged horizons of Rockies to the west. However there is one common trait shared by these states: the lack of water resources. With the continued development of this land, the fact that water is scarce is becoming more real. This issue became more difficult to handle as the public became more aware that many competing uses existed for the finite resource, and those different uses were degrading the natural environments of the surface waters. With this realization instream flow policies provides a comprehensive account of the policy framework a selected number of western states have established in order to protect instream flows and the overall health of a river's ecosystem. Also included is the identification of key policies that should be promoted or removed from a state's instream flow program. Ultimately, this thesis continues to add the the ever-evolving process of modernizing water law frameworks.
Resumo:
Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
This study was designed to examine the habitat use of several species of 0+ cyprinid in the regulated River Great Ouse and to determine the reasons for specific habitat use. In general, all fish species were found associated with the marginal zone, with little diel variation. Use of shallow habitats in the presence of macrophytes correlated well with the distribution of zooplankton in the river channel, the preferred food source of 0+ cyprinids. During the early to late larval phase, all species fed upon rotifers and diatoms. Cladocera, particularly Alona spp. and Chydorus spp., and early instar larvae of Chironomidae, then became prevalent in the diet along with small numbers of Copepoda. Models were developed to determine habitat availability over a range of discharges, using the physical habitat simulation (PHABSIM) component of the Instream Flow Incremental Methodology (IFIM). The results of this analysis revealed that habitat suitable for 0+ fishes comprised a relatively small percentage of the main channel and generally decreased with discharge.
Resumo:
Tem crescido a demanda por energia em todo o mundo. No Brasil, com o aquecimento da economia aumentam ainda mais as pressões. O parque gerador Brasileiro é fortemente baseado na geração hidrelétrica, que representa aproximadamente 77,6% da oferta de geração de eletricidade. Entre os impactos ambientais gerados pela construção de barragens e reservatórios de aproveitamentos hidrelétricos está a mudança do regime fluvial de jusante, a chamada vazão remanescente. Entre outros, esta vazão deve garantir as condições adequadas à sobrevivência e continuação das espécies e dos ecossistemas, associando as necessidades humanas, ambientais e as características de cada região. Tomou-se como objeto de análise dois estudos de caso, a pequena central hidrelétrica (PCH) Santa Gabriela, localizada no rio Correntes, na divisa entre os estados de Mato Grosso e Mato Grosso do Sul e a usina hidrelétrica (UHE) Batalha, situada no rio São Marcos, na divisa entre os estados de Minas Gerais e Goiás. Embora o assunto seja discutido amplamente pela comunidade técnica e acadêmica, não há ainda nos marcos legais Brasileiros associados, uma definição explícita de critérios ou limites para estabelecimento da vazão remanescente. Em geral, as legislações estaduais estabelecem valores máximos outorgáveis determinados a partir de percentuais da curva de permanência (Q90, Q95) ou da vazão mínima anual de sete dias de duração e tempo de recorrência de 10 anos Q7,10, garantindo consequentemente as vazões mínimas remanescentes. Essas metodologias implicam num único valor fixo para a vazão ao longo do ano, o que não condiz com a realidade do regime hidrológico natural. Estudos atuais apontam para um hidrograma ecológico, que represente a variação das vazões entre os meses de estiagem e cheia. Assim, a metodologia envolveu a comparação entre critérios de outorga utilizados em alguns estados Q90, Q95 e Q7,10 e métodos citados na literatura para estudo da vazão ecológica (Tennant, Texas, Vazão Base e Perímetro Molhado) e as Resoluções referentes à Declaração de Reserva de Disponibilidade Hídrica (DRDH) das usinas, que especificam a vazão remanescente nas fases de enchimento e operação, emitidas pela Agência Nacional de Águas (ANA). Observaram-se valores de vazões substancialmente diferenciados entre os seis métodos empregados. Cabe destacar, que representa um avanço a publicação do Manual de Estudos de Disponibilidade Hídrica para Aproveitamentos Hidrelétricos (ANA, 2009), que visa à padronização dos documentos para fins obtenção da DRDH e da outorga do uso do potencial de energia hidráulica em corpo de água de domínio da União. Assim, o empreendedor poderá propor e negociar a demanda hídrica para as necessidades ambientais com as autoridades competentes, o que deverá ser discutido em reunião técnica inicial que deverá contar com a participação da Agência Nacional de Energia Elétrica (ANEEL), ANA, órgão ambiental, empreendedor e a empresa responsável pelos estudos ambientais.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually supressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade.
Resumo:
Coalbed methane production has the potential to reduce instream flows in Powder River Basin streams. Quantifying this effect is difficult, but important, for water users in both Wyoming and Montana. Isotope tracing of coal aquifer groundwater entering the streams can help.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.