998 resultados para Instant properties
Resumo:
The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Scope: Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. Methods and results: The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. Conclusion: The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.
Resumo:
The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.
Resumo:
A novel (main-chain)-(side-chain) vinyl polyperoxide, poly(dipentene peroxide)(PDP), an alternating copolymer of dipentene (DP) and oxygen, has been synthesized by thermal oxidative polymerization of DP. The PDP was characterized by 1H NMR, 13C NMR, FTIR, DSC, TGA, and EI-MS studies. The overall activation energies of the degradation from Kissinger’s method were 28 and 33 kcal/mol, respectively, for the endocyclic and acyclic peroxide units. The side-chain peroxy groups were found to be thermally more stable than the main chain. Above 45°C the rate of polymerization increases sharply at a particular instant showing an “autoacceleration” with the formation of knee point. The kinetics of autoacceleration has been studied at various temperatures (45–70°C) and pressures (50–250 psi). © 2000 John Wiley&Sons, Inc. J Appl Polym Sci 79: 1549–1555, 2001
Resumo:
Flammability limits for flames propagating in a rich propane/air mixture under gravity conditions appeared to be 6.3% C3H8 for downward propagation and 9.2% C3H8 for upward propagation. Different limits might be explained by the action of preferential diffusion of the deficient reactant (Le < 1) on the limit flames, which are in different states of instability. In one of the previous studies, the flammability limits under microgtravity conditions were found to be between the upward and downward limits obtained in a standard flammability tube under normal gravity conditions. It was found in those experiments that there are two limits under microgravity conditions: one indicated by visible flame propagation and another indicated by an increase of pressure without observed flame propagation. These limits were found to be far behind the limit for downward-propagating flame at 1 g (6.3% C3H8) and close to the limit for upward-propagating flame at 1 g (9.2% C3H8). It was decided in the present work to apply a special schlieren system and instant temperature measuring system for drop tower experiments to observe combustion development during propagation of the flame front. A small cubic closed vessel (inner side, 9 cm 9 cm 9 cm) with schlieren quality glass windows were used to study limit flames under gravity and microgravity conditions. Flame development in rich limit mixtures, not visible in previous experiments under microgravity conditions for strait photography, was identified with the use of the schlieren method and instant temperature measuring system. It was found in experiments in a small vessel that there is practically no difference in flammability limits under gravity and microgravity conditions. In this paper, the mechanism of flame propagation under these different conditions is systematically studied and compared and limit burning velocity is estimated.
Resumo:
The aim of this study was to investigate the survival of freeze dried Lactobacillus plantarum cells mixed with several freeze dried instant fruit powders (strawberry, pomegranate, blackcurrant and cranberry) during storage for 12 months as well as after reconstitution with water each month. Inulin and gum arabic were also added to the instant fruit powders at two levels (10% and 20% w/w of dry weight) to improve the cell survival and functional properties of the product. The best cell survival over the 12 months of storage was observed for the blackcurrant powder (almost no decrease) followed by strawberry (~ 0.3 log decrease), pomegranate (~ 0.9 log decrease), whereas the worst survival was obtained in cranberry powder (~ 4.5 logs). To explain these results multiple regression analysis was conducted with the log decrease [log10N0 month − log10N12 months] as the dependent variable and water activity, pH, citric acid, dietary fibre and total phenol as the independent variables. The results indicated that among all the examined factors, the [log10N0 month − log10N12 months] depended only on the water activity (P < 0.05). Inulin and gum arabic demonstrated a substantial protective effect on cell survival (1–1.5 log) in the case of cranberry, which was likely due to a physical interaction between the cells and the carbohydrates. After reconstituting the dried fruit powders at room temperature and measuring cell viability for up to 4 h, it was shown that in the case of strawberry juice there was no decrease, and very little in the case of pomegranate and blackcurrant juices (< 0.5 log). On the other hand, a significant decrease was observed for cranberry juice (P < 0.05), which increased as the storage time of the dried cranberry powder increased, indicating that the cells became more susceptible with prolonged storage. Multiple regression analysis indicated that the main factors influencing cell survival were water activity and pH, while citric acid, dietary fibre and total phenol did not have an effect. Furthermore, inulin and gum arabic addition did not have a significant (P > 0.05) effect upon reconstitution of the dried fruit powder. This study showed that instant juice powders are very good carriers of probiotic cells and constitute good alternatives to highly acidic fruit juices.
Resumo:
The aim of this study was to compare some of the properties of native and extruded amaranth flour obtained under mild and severe extrusion conditions. The chemical composition of the flours was similar. Flours obtained by both extrusion processes presented high solubility in water, low values of L* (luminosity) and an absence of endothermic peak on the DSC method. Water absorption, retrogradation tendency, final viscosity and the viscous behavior by rheology analysis were also studied. The results indicate that extruded flours have a good potential as an ingredient for food exposed to heat treatment at a high temperature and mechanical shear, for use in instant meal products. On the other hand, original flour properties are comparable to those of amaranth starch, which exhibits similarly high quality paste stability, low solubility in water, and elastic behavior, and could be used as a substitute for raw flour in a range of food formulas. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Viscoelastic asphalt binder plays an important role in bonding individual aggregate particles and contributes to the durability and stability of asphalt pavement. When asphalt binder is subjected to cyclic loading, deformation and fracture may develop simultaneously within it, leading to the deterioration of material properties and eventually fatigue failure. Research has found that some degree of recovery may develop if rest periods are applied after fatigue deterioration. However, it is not clear whether such recovery is caused by fracture healing, viscoelastic recovery, or both. This paper presents an analysis to differentiate the contributions of fracture healing and viscoelastic recovery to the asphalt binder during rest periods. It also evaluates the damage caused by deformation and fracture during a fatigue process. It is found that viscoelastic recovery plays an important role in the instant increase in the dynamic shear modulus at the beginning of the rest period. The effect of fracture healing on dynamic shear modulus recovery is more dominant in the long term. A healing index is developed based only on the fracture healing of asphalt binder, excluding the effect of viscoelastic recovery. It can be used to evaluate the true healing properties of different asphalt binders. Copyright © 2014 by ASTM International.
Resumo:
This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stichiometric mixture of hardener, flydust and aluminium powder under microwave energy. In this work, the curing process of thin layers of epoxy resins using microwave radiation was investigated as an alternative technique that can be implemented to develop a new rapid product development technique. In this study it was observed that the curing time and temperature were a function of the percentage of hardener and fillers presence in the epoxy resins. Initially dielectric properties of epoxy resins with hardener were measured which was directly correlated to the curing process in order to understand the properties of cured specimen. Tensile tests were conducted on the three different types of epoxy resins with hardener and fillers. Modifying dielectric properties of the mixtures a significant decrease in curing time was observed. In order to study the microstructural changes of cured specimen the morphology of the fracture surface was carried out by using scanning electron microscopy.