986 resultados para Insecticides - Toxicology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 muM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect oil AChE activity but a Strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 microM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect on AChE activity but a strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today’s settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene–environment interactions. For a best conduct of studies, modern toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we inserted the plasmid vector pKK233-2 containing rat GSH S-transferase (GST) 5-5 cDNA into Salmonella typhimurium TA1535 and found that these bacteria [GST 5-5(+)] expressed the protein and produced mutations when ethylene or methylene dihalides were added [Thier, R., Taylor, J. B., Pemble, S. E., Ketterer, B., Persmark, M., Humphreys, W. G., and Guengerich, F. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8576-8580]. After exposure to the known GST 5-5 substrate 1,2-epoxy-3-(4′-nitrophenoxy)propane, the GST 5-5(+) strain showed fewer mutants than the bacteria transfected with the cDNA clone in a reverse orientation [GST 5-5(-)], suggesting a protective role of GST 5-5. However, mutations were considerably enhanced in the GST 5-5(+) strain [as compared to GST 5-5(-)] when 1,2,3,4-diepoxybutane (butadiene diepoxide) or 1,2-epoxy-4-bromobutane was added. The GST 5-5(+) and GST 5-5(-) bacterial stains showed similar responses to 1,2-epoxypropane, 3,4-epoxy-1-butene, and 1,4-dibromobutane. The results suggest that some bifunctional activated butanes are transformed to mutagenic products through GSH conjugation. We also found that the GST 5-5(+) strain showed enhanced mutagenicity with 1,4-dibromo-2,3-epoxybutane, 1,2-epoxy-3-bromopropane (epibromohydrin), and (±)-1,4-dibromo-2,3-dihydroxybutane. The possibility was considered that a 5-membered thialonium ion may be involved in the mutagenicity. Model thialonium compounds were rather stable to hydrolysis in aqueous solution at pH 7.4 and slowly alkylated 4-(4-nitrobenzyl)pyridine. The presence of a hydroxyl group β to the sulfur did not enhance reactivity. Mechanisms involving episulfonium ions are considered more likely. Potential oxidation products of the toxic pesticide 1,2-dibromo-3-chloropropane (DBCP) were also considered in this system. DBCP itself gave rather similar results in the two strains. Others have reported that oxidation of DBCP is required for mutagenicity, along with GST-catalyzed GSH conjugation [Simula, T. P., Glancey, M. J., Söderlund, E. J., Dybing, E., and Wolf, C. R. (1993) Carcinogenesis 14, 2303-2307]. The putative oxidation product 1,2-dibromopropional did not show a difference between the two strains. However, 1,3-dichloroacetone, a model for the putative oxidation product 1-bromo-3-chloroacetone, was considerably more mutagenic in the GST 5-5(+) strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of malathion in fruit fly protein bait sprays has raised serious concerns due to its adverse effects on non-target organisms. This has necessitated the evaluation of novel reduced-risk compounds. This study evaluated the effects of spinosad, fipronil, malathion and chlorpyrifos mixed with fruit fly protein bait (Mauri Pinnacle protein®) on attraction, feeding and mortality of the Queensland fruit fly, Bactrocera tryoni (Froggatt). The effects of outdoor weathering of these mixtures on fly mortality were also determined. In field-cage experiment, protein-starved flies showed the same level of attraction to baits containing spinosad, fipronil, malathion, chlorpyrifos and protein alone used as control. Female protein-starved flies were deterred from feeding on baits containing malathion and chlorpyrifos compared to baits containing spinosad, fipronil and protein alone. Baits containing malathion and chlorpyrifos caused higher fly mortality and rapid fly knock down than spinosad and fipronil. However, spinosad acted slowly and caused an increase in fly mortality over time, causing up to 90% fly mortality after 72-h. Baits containing malathion and chlorpyrifos, applied on citrus leaves and weathered outdoors, had longer residual effectiveness in killing flies than spinosad and fipronil. Residual effectiveness of the spinosad bait mixture waned significantly after 3 days of outdoor weathering. Results suggest that spinosad and fipronil can be potential alternatives for malathion in protein bait sprays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traps baited with synthetic aggregation pheromones of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus davidsoni Dobson and fermenting bread dough were used to identify the fauna and monitor the seasonal abundance of Carpophilus spp. in insecticide treated peach and nectarine orchards in the Gosford area of coastal New South Wales. In four orchards 67 178 beetles were trapped during 1994–1995, with C. davidsoni (82%) and Carpophilus gaveni (Dobson) (12.2%) dominating catches. Five species (C. hemipterus, C. mutilatus, Carpophilus marginellus Motschulsky, Carpophilus humeralis (F.) and an unidentified species) each accounted for 0.2–3.2% of trapped beetles. Carpophilus davidsoni was most abundant during late September–early October but numbers declined rapidly during October, usually before insecticides were applied. Spring populations of Carpophilus spp. were very large in 1994–1995 (1843–2588 per trap per week). However, despite a preharvest population decline of approximately 95% and 2–11 applications of insecticide, 14–545 beetles per trap per week (above the arbitrary fruit damage threshold of 10 beetles per trap per week) were recorded during the harvest period and fruit damage occurred at three of the four orchards. Lower preharvest populations in 1995–1996 (< 600 per trap per week) and up to six applications of insecticide resulted in < 10 beetles per trap per week during most of the harvest period and minimal or no fruit damage. The implications of these results for the integrated management of Carpophilus spp. in coastal and inland areas of southeastern Australia are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of insecticides in controlling Helicoverpa spp., predominantly H. armigera (Hubner), on capsicum and zucchini was tested in small plot trials. Indoxacarb, methoxyfenozide, spinosad, emamectin benzoate and novaluron provided control, as measured by the percentage of damaged fruit, equal to or better than standard treatments of methomyl or methomyl alternated with methamidophos on capsicum. The Helicoverpa nucleopolyhedrovirus gave control equivalent to the standard treatment, as did Bacillus thuringiensis aizawai, but B. thuringiensis kurstaki was ineffective. Helicoverpa armigera larvae were present in zucchini flowers but did little damage to the fruit. None of the insecticides significantly reduced the percentage of damaged zucchini fruit compared with the untreated control. Bifenthrin, spinosad, emamectin benzoate and methoxyfenozide were effective in controlling larvae in flowers, while methomyl, B. thuringiensis aizawai, B. thuringiensis kurstaki and novaluron were not effective. Data indicated that all the insecticides effectively controlled larvae of Diaphania indica (Saunders), cucumber moth, in the zucchini flowers. There has been a limited range of insecticides available to manage Helicoverpa spp. in these vegetable crops, but these trials demonstrate the effectiveness of a number of newer insecticides that could be used and that would be compatible with integrated pest management programs in the crops.