992 resultados para Input sequence
Resumo:
The analysis of sequential data is required in many diverse areas such as telecommunications, stock market analysis, and bioinformatics. A basic problem related to the analysis of sequential data is the sequence segmentation problem. A sequence segmentation is a partition of the sequence into a number of non-overlapping segments that cover all data points, such that each segment is as homogeneous as possible. This problem can be solved optimally using a standard dynamic programming algorithm. In the first part of the thesis, we present a new approximation algorithm for the sequence segmentation problem. This algorithm has smaller running time than the optimal dynamic programming algorithm, while it has bounded approximation ratio. The basic idea is to divide the input sequence into subsequences, solve the problem optimally in each subsequence, and then appropriately combine the solutions to the subproblems into one final solution. In the second part of the thesis, we study alternative segmentation models that are devised to better fit the data. More specifically, we focus on clustered segmentations and segmentations with rearrangements. While in the standard segmentation of a multidimensional sequence all dimensions share the same segment boundaries, in a clustered segmentation the multidimensional sequence is segmented in such a way that dimensions are allowed to form clusters. Each cluster of dimensions is then segmented separately. We formally define the problem of clustered segmentations and we experimentally show that segmenting sequences using this segmentation model, leads to solutions with smaller error for the same model cost. Segmentation with rearrangements is a novel variation to the segmentation problem: in addition to partitioning the sequence we also seek to apply a limited amount of reordering, so that the overall representation error is minimized. We formulate the problem of segmentation with rearrangements and we show that it is an NP-hard problem to solve or even to approximate. We devise effective algorithms for the proposed problem, combining ideas from dynamic programming and outlier detection algorithms in sequences. In the final part of the thesis, we discuss the problem of aggregating results of segmentation algorithms on the same set of data points. In this case, we are interested in producing a partitioning of the data that agrees as much as possible with the input partitions. We show that this problem can be solved optimally in polynomial time using dynamic programming. Furthermore, we show that not all data points are candidates for segment boundaries in the optimal solution.
Resumo:
The input-constrained erasure channel with feedback is considered, where the binary input sequence contains no consecutive ones, i.e., it satisfies the (1, infinity)-RLL constraint. We derive the capacity for this setting, which can be expressed as C-is an element of = max(0 <= p <= 0.5) (1-is an element of) H-b (p)/1+(1-is an element of) p, where is an element of is the erasure probability and Hb(.) is the binary entropy function. Moreover, we prove that a priori knowledge of the erasure at the encoder does not increase the feedback capacity. The feedback capacity was calculated using an equivalent dynamic programming (DP) formulation with an optimal average-reward that is equal to the capacity. Furthermore, we obtained an optimal encoding procedure from the solution of the DP, leading to a capacity-achieving, zero-error coding scheme for our setting. DP is, thus, shown to be a tool not only for solving optimization problems, such as capacity calculation, but also for constructing optimal coding schemes. The derived capacity expression also serves as the only non-trivial upper bound known on the capacity of the input-constrained erasure channel without feedback, a problem that is still open.
Resumo:
Modern computer systems are plagued with stability and security problems: applications lose data, web servers are hacked, and systems crash under heavy load. Many of these problems or anomalies arise from rare program behavior caused by attacks or errors. A substantial percentage of the web-based attacks are due to buffer overflows. Many methods have been devised to detect and prevent anomalous situations that arise from buffer overflows. The current state-of-art of anomaly detection systems is relatively primitive and mainly depend on static code checking to take care of buffer overflow attacks. For protection, Stack Guards and I-leap Guards are also used in wide varieties.This dissertation proposes an anomaly detection system, based on frequencies of system calls in the system call trace. System call traces represented as frequency sequences are profiled using sequence sets. A sequence set is identified by the starting sequence and frequencies of specific system calls. The deviations of the current input sequence from the corresponding normal profile in the frequency pattern of system calls is computed and expressed as an anomaly score. A simple Bayesian model is used for an accurate detection.Experimental results are reported which show that frequency of system calls represented using sequence sets, captures the normal behavior of programs under normal conditions of usage. This captured behavior allows the system to detect anomalies with a low rate of false positives. Data are presented which show that Bayesian Network on frequency variations responds effectively to induced buffer overflows. It can also help administrators to detect deviations in program flow introduced due to errors.
Resumo:
Unary operators are functions of a single variable. Realization of quaternary unary operators (QUOs) using quaternary multiplexer (QMUX) is presented in this paper. QUOs are divided into eight groups on the basis of the number of change overs in the output for an input sequence of 0, 1, 2, 3. This grouping reduces the hardware required to realize them. QMUX with two, three, and four input lines are proposed for the realization of QUOs belonging to the eight groups. A systematic procedure for the selection of QMUX and the implementation of the QUOs are given. The QMUXs are designed using CMOS ICs. The hardware required for their implementation is also discussed.
Resumo:
A palindrome is a set of characters that reads the same forwards and backwards. Since the discovery of palindromic peptide sequences two decades ago, little effort has been made to understand its structural, functional and evolutionary significance. Therefore, in view of this, an algorithm has been developed to identify all perfect palindromes (excluding the palindromic subset and tandem repeats) in a single protein sequence. The proposed algorithm does not impose any restriction on the number of residues to be given in the input sequence. This avant-garde algorithm will aid in the identification of palindromic peptide sequences of varying lengths in a single protein sequence.
Resumo:
This thesis presents methods for incrementally constructing controllers in the presence of uncertainty and nonlinear dynamics. The basic setting is motion planning subject to temporal logic specifications. Broadly, two categories of problems are treated. The first is reactive formal synthesis when so-called discrete abstractions are available. The fragment of linear-time temporal logic (LTL) known as GR(1) is used to express assumptions about an adversarial environment and requirements of the controller. Two problems of changes to a specification are posed that concern the two major aspects of GR(1): safety and liveness. Algorithms providing incremental updates to strategies are presented as solutions. In support of these, an annotation of strategies is developed that facilitates repeated modifications. A variety of properties are proven about it, including necessity of existence and sufficiency for a strategy to be winning. The second category of problems considered is non-reactive (open-loop) synthesis in the absence of a discrete abstraction. Instead, the presented stochastic optimization methods directly construct a control input sequence that achieves low cost and satisfies a LTL formula. Several relaxations are considered as heuristics to address the rarity of sampling trajectories that satisfy an LTL formula and demonstrated to improve convergence rates for Dubins car and single-integrators subject to a recurrence task.
Resumo:
The problem of discovering frequent arrangements of regions of high occurrence of one or more items of a given alphabet in a sequence is studied, and two efficient approaches are proposed to solve it. The first approach is entropy-based and uses an existing recursive segmentation technique to split the input sequence into a set of homogeneous segments. The key idea of the second approach is to use a set of sliding windows over the sequence. Each sliding window keeps a set of statistics of a sequence segment that mainly includes the number of occurrences of each item in that segment. Combining these statistics efficiently yields the complete set of regions of high occurrence of the items of the given alphabet. After identifying these regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a region). An efficient algorithm for mining frequent arrangements of temporal intervals on a single sequence is applied on the converted sequence to discover frequently occurring arrangements of these regions. The proposed algorithms are tested on various DNA sequences producing results with significant biological meaning.
Resumo:
This paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
The platform-independent software package consisting of the oligonucleotide mass assembler (OMA) and the oligonucleotide peak analyzer (OPA) was created to support the analysis of oligonucleotide mass spectra. It calculates all theoretically possible fragments of a given input sequence and annotates it to an experimental spectrum, thus, saving a large amount of manual processing time. The software performs analysis of precursor and product ion spectra of oligonucleotides and their analogues comprising user-defined modifications of the backbone, the nucleobases, or the sugar moiety, as well as adducts with metal ions or drugs. The ability to expand the library of building blocks and to implement individual structural variations makes it extremely useful for supporting the analysis of therapeutically active compounds. The functionality of the software tool is demonstrated on the examples of a platinated doublestranded oligonucleotide and a modified RNA sequence. Experiments also reveal the unique dissociation behavior of platinated higher-order DNA structures.
Resumo:
In this paper, a novel and approach for obtaining 3D models from video sequences captured with hand-held cameras is addressed. We define a pipeline that robustly deals with different types of sequences and acquiring devices. Our system follows a divide and conquer approach: after a frame decimation that pre-conditions the input sequence, the video is split into short-length clips. This allows to parallelize the reconstruction step which translates into a reduction in the amount of computational resources required. The short length of the clips allows an intensive search for the best solution at each step of reconstruction which robustifies the system. The process of feature tracking is embedded within the reconstruction loop for each clip as opposed to other approaches. A final registration step, merges all the processed clips to the same coordinate frame
Resumo:
2000 Mathematics Subject Classification: 62H15, 62P10.
Resumo:
[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.
The use of virtual prototyping to rehearse the sequence of construction work involving mobile cranes
Resumo:
Purpose – Rehearsing practical site operations is without doubt one of the most effective methods for minimising planning mistakes, because of the learning that takes place during the rehearsal activity. However, real rehearsal is not a practical solution for on-site construction activities, as it not only involves a considerable amount of cost but can also have adverse environmental implications. One approach to overcoming this is by the use of virtual rehearsals. The purpose of this paper is to investigate an approach to simulation of the motion of cranes in order to test the feasibility of associated construction sequencing and generate construction schedules for review and visualisation. Design/methodology/approach – The paper describes a system involving two technologies, virtual prototyping (VP) and four-dimensional (4D) simulation, to assist construction planners in testing the sequence of construction activities when mobile cranes are involved. The system consists of five modules, comprising input, database, equipment, process and output, and is capable of detecting potential collisions. A real-world trial is described in which the system was tested and validated. Findings – Feedback from the planners involved in the trial indicated that they found the system to be useful in its present form and that they would welcome its further development into a fully automated platform for validating construction sequencing decisions. Research limitations/implications – The tool has the potential to provide a cost-effective means of improving construction planning. However, it is limited at present to the specific case of crane movement under special consideration. Originality/value – This paper presents a large-scale, real life case of applying VP technology in planning construction processes and activities.