923 resultados para Input impedance
Resumo:
The results of a study of the variation of three-phase induction machines' input impedance with frequency are proposed. A range of motors were analysed, both two-pole and four-pole, and the magnitude and phase of the input impedance were obtained over a wide frequency range of 20 Hz-1 MHz. For test results that would be useful in the prediction of the performance of induction machines during typical use, a test procedure was developed to represent closely typical three-phase stator coil connections when the induction machine is driven by a three-phase inverter. In addition, tests were performed with the motor's cases both grounded and not grounded. The results of the study show that all induction machines of the type considered exhibit a multiresonant impedance profile, where the input impedance reaches at least one maximum as the input frequency is increased. Furthermore, the test results show that the grounding of the motor's case has a significant effect on the impedance profile. Methods to exploit the input impedance profile of an induction machine to optimise machine and inverter systems are also discussed.
Resumo:
"Contract No. AF33(616)-310 RDO No. R-112-110 SR-6f2"
Resumo:
Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.
Resumo:
A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.
Resumo:
A new excitation model for the numerical solution of field integral equation (EFIE) applied to arbitrarily shaped monopole antennas fed by coaxial lines is presented. This model yields a stable solution for the input impedance of such antennas with very low numerical complexity and without the convergence and high parasitic capacitance problems associated with the usual delta gap excitation.
Resumo:
A field matching method is described to analyze a recessed circular cavity radiating into a radial waveguide. Using the wall impedance approach, the analysis is divided into two separate problems of the cavity and its external environment. Based on this analysis, a computer algorithm is developed for determining wall admittances as seen at the edge of the patch in the cavity, the radial admittance matrix for the two-probe feed arrangement, and the input impedance as observed from the coaxial line feeding the cavity. This algorithm is tested against the general-purpose Hewlett-Packard finite-element High Frequency Structure Simulator as well as against measured results. Good agreement in all considered cases is noted.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
Aquest projecte es centra en el disseny d’una antena microstrip per a GNSS. Una antena per a GNSS ha de tenir adaptació de impedància d’entrada i polarització circular a dretes, com a principals especificacions, en el rang de 1.15-1.6 GHz. El tipus d’alimentació d’una antena microstrip amb el major ample de banda d’adaptació és l’alimentació mitjançant acoblament per apertura. Si a l’antena s’introdueixen dos apertures de forma ortogonal, alimentades amb un desfasament de 90º entre elles, s’aconsegueix polarització circular. L’opció de separar les apertures redueix la transferència de potència entre elles, i disminueix el guany de polarització creuada. La xarxa d’alimentació dissenyada és un divisor de Wilkinson amb una línia de λ/4 a la freqüència central, encara que el desfasament als extrems de la banda no sigui de 90º. Com a xarxa d’alimentació es va provar un hibrid de 90º, però l’elevat valor del paràmetre S21 de l’antena impossibilita l’adaptació a l’entrada del hibrid.
Resumo:
The research of power-line communications has been concentrated on home automation, broadband indoor communications and broadband data transfer in a low voltage distribution network between home andtransformer station. There has not been carried out much research work that is focused on the high frequency characteristics of industrial low voltage distribution networks. The industrial low voltage distribution network may be utilised as a communication channel to data transfer required by the on-line condition monitoring of electric motors. The advantage of using power-line data transfer is that it does not require the installing of new cables. In the first part of this work, the characteristics of industrial low voltage distribution network components and the pilot distribution network are measured and modelled with respect topower-line communications frequencies up to 30 MHz. The distributed inductances, capacitances and attenuation of MCMK type low voltage power cables are measured in the frequency band 100 kHz - 30 MHz and an attenuation formula for the cables is formed based on the measurements. The input impedances of electric motors (15-250 kW) are measured using several signal couplings and measurement based input impedance model for electric motor with a slotted stator is formed. The model is designed for the frequency band 10 kHz - 30 MHz. Next, the effect of DC (direct current) voltage link inverter on power line data transfer is briefly analysed. Finally, a pilot distribution network is formed and signal attenuation in communication channels in the pilot environment is measured. The results are compared with the simulations that are carried out utilising the developed models and measured parameters for cables and motors. In the second part of this work, a narrowband power-line data transfer system is developed for the data transfer ofon-line condition monitoring of electric motors. It is developed using standardintegrated circuits. The system is tested in the pilot environment and the applicability of the system for the data transfer required by the on-line condition monitoring of electric motors is analysed.
Resumo:
Bacteriorhodopsin (BR) is a photosensitive protein which functions as a light-driven proton pump. Due to its photoactivity, BR could be used in photosensing and information processing which has inspired researchers to study the photoelectric response and the appropriate measurement instrumentation for BR. In this thesis, the measurement instrumentation connected to a dry BR sensor was confirmed to affect the photovoltage response measured by using voltage amplifiers. Changing of the input impedance of the measurement instrumentation was shown to alter a part of the measured photovoltage response. The photocurrent measurements using transimpedance amplifier and the presented electrical equivalent circuit were used to show that the photocurrent measurements have no significant effect on the photoelectric response. The photocurrent was shown to be a derivate of the photovoltage response measured from the dry BR sensor when it was compared to the response measured with a voltage amplifier. This confirmed that another part of the photovoltage response was not affected by the measurement instrumentation. The time-variant behavior of the dry BR sensor was confirmed in both the photocurrent and the photovoltage measurements. This was caused by the fact that the capacitance of the dry BR sensor changes with the excitation light intensity.
Resumo:
A new compact micro strip antenna element is analyzed. The analysis can accurately predict the resonant frequency, input impedance, and radiation patterns. The predicted results are compared with experimental results and excellent agreement is observed . These antenna elements are more suitable in applications where limited antenna real estate is available
Resumo:
A new compact microstrip antenna element is analyzed. The analysis can accurately predict the resonant frequency, input impedance, and radiation patterns. The predicted results are compared with experimental results and excellent agreement is observed . These antenna elements are more suitable in applications where limited antenna real estate is available