938 resultados para Injection pump


Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用高速摄影技术,研究了压力雾化喷嘴对甲醇、水和柴油多组元乳化液的雾化特性. 结果表明:当实验工质为乳化液时,提高喷油泵的转速,喷油器喷嘴的有效喷射压力随之上升,喷雾贯穿速度提高,喷雾锥角增大,喷雾的持续时间增长;乳化液和柴油的喷雾有一定的差异,即柴油的喷雾锥角比乳化液的大,喷油器的嘴端压力比乳化液的小,喷雾持续时间也比乳化液的短.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

介绍国内外连续流动式聚合酶链式反应生物芯片/微装置中脱氧核糖核酸样品的驱动控制技术进展,主要包括恒流泵(注射泵驱动和蠕动泵驱动)、旋转泵驱动、磁流体动力驱动以及自然对流驱动等。并对这几种驱动方式的优缺点作简要的讨论(引用文献43篇)。


A review of the recent progress of actuation control technique of DNA samples in micro-device of continuous-flow polymer ase chain reaction biochip,Covering mainly the years from 1985 tO 2006 was presented in this paper,pertaining especially to the actuation by constant flow pumps(actuated with injection pump and peristaltic pump),by rotary pump,and magnetohydrodynamic actuation and natural convection actuation;and a brief discussion On the merits and defects of various ways of actuation was also given(43 ref.cited).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viscosity is a measure fluid resistance to flowing, affecting the fuel spray in the combustion chamber and, by this way, thus the formation of carbon deposits. The analysis of the influence of vegetable oil viscosity in biodiesel seems appropriate, because biodiesel viscosity is a function of vegetable oil. The increase of the fuel viscosity, promoted by biodiesel, has a major impact on the dynamics of jet fuel, increasing its speed and distance of penetration, obtaining therefore an increase in the amount of turbulent movement of the jet and thus an increase in the rate of preparation of the mixture, air-fuel, when adding biodiesel to diesel oil. The negative effect of this higher fuel viscosity is the increase of the wear of the train of gears, cam shaft, and valve push rod of all the injection pumps due to the higher pressure of injection. The viscosity of biodiesel is influenced by the size of its molecule and by the increase of molecule insaturations, is directly related with its origin vegetable oil or fat. This study is a review of the influence of vegetable oils in viscosity of biodiesel. Copyright © 2008 SAE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An injection locking-based pump recovery system for phase-sensitive amplified links, capable of handling 40 dB effective span loss, is demonstrated. Measurements with 10 GBd DQPSK signals show penalty-free recovery of a pump wave, phase modulated with two sinusoidal RF-tones at 0.1 GHz and 0.3 GHz, with 64 dB amplification. The operating power limit for the pump recovery system is experimentally investigated and is governed by the noise transfer and phase modulation transfer characteristics of the injection-locked laser. The corresponding link penalties are explained and quantified. This system enables, for the first time, WDM compatible phase-sensitive amplified links over significant lengths. © 2013 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An injection-locking-based pump recovery system for phase-sensitively amplified links is proposed and studied experimentally. Measurements with 10 Gbaud DQPSK signals show penalty-free recovery of 0.8 GHz FWHM bandwidth pump with 63 dB overall amplification. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents numerical analysis of the thermally actuated superconducting flux pump. Visualization of the behavior of the magnetic flux helps our understanding of flux injection mechanism. In addition, in order to confirm validity of the result, we conducted a preliminary flux pump experiment. This result qualitatively agrees well with the experimental one. The flux pump system utilizes a particular behavior that permeability of some materials such as Gadolinium is sensitive to the temperature. In this paper a simple heater is used to control the flux pump system. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A packed-bed electroosmotic pump (EOP) was constructed and evaluated. The EOP consisted of three capillary columns packed in parallel, a gas-releasing device, Pt electrodes and a high-voltage power supply. The EOP could generate output pressure above 5.0 MPa and constant flow rate in the range of nl/min to a few mul/min for pure water, pure methanol, 2 mM potassium dihydrogenphosphate buffer, the buffer-methanol mixture and the pure water-methanol mixture at applied potentials less than 20 W The composition of solvent before/after pumping was quantitatively determined by using a gas chromatograph equipped with both flame ionization detector and thermal conductivity detector. It was found that there were no apparent changes in composition and relative concentrations after pumping process for a methanol-ethanol-acetonitrile mixture and a methanol-water mixture. Theoretical aspect of the EOP was discussed in detail. An capillary HPLC system consisting of the EOP, an injection valve, a 15 cm x 320 mum i.d., 5 mum Spherigel C(18) stainless steel analytical column, and an on-column UV detector was connected to evaluate the performance of the EOP. A comparative study was also carried out with a mechanical capillary HPLC pump on the same system. The results demonstrated that the reproducibility of flow rate and the pulsation-free flow property of the EOP are superior to that of mechanical pump in capillary HPLC application. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow injection analysis (FIA) was applied to the determination of both chloride ion and mercury in water. Conventional FIA was employed for the chloride study. Investigations of the Fe3 +/Hg(SCN)2/CI-,450 nm spectrophotometric system for chloride determination led to the discovery of an absorbance in the 250-260 nm region when Hg(SCN)2 and CI- are combined in solution, in the absence of iron(III). Employing an in-house FIA system, absorbance observed at 254 nm exhibited a linear relation from essentially 0 - 2000 Jlg ml- 1 injected chloride. This linear range spanning three orders of magnitude is superior to the Fe3+/Hg(SCN)2/CI- system currently employed by laboratories worldwide. The detection limit obtainable with the proposed method was determin~d to be 0.16 Jlg ml- 1 and the relative standard deviation was determined to be 3.5 % over the concentration range of 0-200 Jig ml- 1. Other halogen ions were found to interfere with chloride determination at 254 nm whereas cations did not interfere. This system was successfully applied to the determination of chloride ion in laboratory water. Sequential injection (SI)-FIA was employed for mercury determination in water with the PSA Galahad mercury amalgamation, and Merlin mercury fluorescence detection systems. Initial mercury in air determinations involved injections of mercury saturated air directly into the Galahad whereas mercury in water determinations involved solution delivery via peristaltic pump to a gas/liquid separator, after reduction by stannous chloride. A series of changes were made to the internal hardware and valving systems of the Galahad mercury preconcentrator. Sequential injection solution delivery replaced the continuous peristaltic pump system and computer control was implemented to control and integrate all aspects of solution delivery, sample preconcentration and signal processing. Detection limits currently obtainable with this system are 0.1 ng ml-1 HgO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimization of photo-Fenton degradation of copper phthalocyanine blue was achieved by response surface methodology (RSM) constructed with the aid of a sequential injection analysis (SIA) system coupled to a homemade photo-reactor. Highest degradation percentage was obtained at the following conditions [H(2)O(2)]/[phthalocyanine] = 7, [H(2)O(2)]/[FeSO(4)] = 10, pH = 2.5, and stopped flow time in the photo reactor = 30 s. The SIA system was designed to prepare a monosegment containing the reagents and sample, to pump it toward the photo-reactor for the specified time and send the products to a flow-through spectrophotometer for monitoring the color reduction of the dye. Changes in parameters such as reagent molar ratios. residence time and pH were made by modifications in the software commanding the SI system, without the need for physical reconfiguration of reagents around the selection valve. The proposed procedure and system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 97% of the dye was degraded. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the optimization and use of a Sequential Injection Analysis (SIA) procedure for ammonium determination in waters. Response Surface Methodology (RSM) was used as a tool for optimization of a procedure based on the modified Berthelot reaction. The SIA system was designed to (i) prepare the reaction media by injecting an air-segmented zone containing the reagents in a mixing chamber, (ii) to aspirate the mixture back to the holding coil after homogenization, (iii) drive it to a thermostated reaction coil, where the flow is stopped for a previously established time, and (iv) to pump the mixture toward the detector flow cell for the spectrophotometric measurements. Using a 100 mu mol L(-1) ammonium solution, the following factors were considered for optimization: reaction temperature (25 - 45 degrees C), reaction time (30 - 90 s), hypochlorite concentration (20 - 40 mmol L(-1)) nitroprusside concentration (10 - 40 mmol L(-1)) and salicylate concentration (0.1 - 0.3 mol L(-1)). The proposed system fed the statistical program with absorbance data for fast construction of response surface plots. After optimization of the method, figures of merit were evaluated, as well as the ammonium concentration in some water samples. No evidence of statistical difference was observed in the results obtained by the proposed method in comparison to those obtained by a reference method based on the phenol reaction. (C) 2010 Elsevier B.V. All rights reserved.