62 resultados para Initialisation
Resumo:
An initialisation process is a key component in modern stream cipher design. A well-designed initialisation process should ensure that each key-IV pair generates a different key stream. In this paper, we analyse two ciphers, A5/1 and Mixer, for which this does not happen due to state convergence. We show how the state convergence problem occurs and estimate the effective key-space in each case.
Resumo:
Sfinks is a shift register based stream cipher designed for hardware implementation. The initialisation state update function is different from the state update function used for keystream generation. We demonstrate state convergence during the initialisation process, even though the individual components used in the initialisation are one-to-one. However, the combination of these components is not one-to-one.
Resumo:
A5/1 is a shift register based stream cipher which uses a majority clocking rule to update its registers. It is designed to provide privacy for the GSM system. In this paper, we analyse the initialisation process of A5/1. We demonstrate a sliding property of the A5/1 cipher, where every valid internal state is also a legitimate loaded state and multiple key-IV pairs produce phase shifted keystream sequences. We describe a possible ciphertext only attack based on this property.
Resumo:
Stream ciphers are symmetric key cryptosystems that are used commonly to provide confidentiality for a wide range of applications; such as mobile phone, pay TV and Internet data transmissions. This research examines the features and properties of the initialisation processes of existing stream ciphers to identify flaws and weaknesses, then presents recommendations to improve the security of future cipher designs. This research investigates well-known stream ciphers: A5/1, Sfinks and the Common Scrambling Algorithm Stream Cipher (CSA-SC). This research focused on the security of the initialisation process. The recommendations given are based on both the results in the literature and the work in this thesis.
Resumo:
The Common Scrambling Algorithm Stream Cipher (CSASC) is a shift register based stream cipher designed to encrypt digital video broadcast. CSA-SC produces a pseudo-random binary sequence that is used to mask the contents of the transmission. In this paper, we analyse the initialisation process of the CSA-SC keystream generator and demonstrate weaknesses which lead to state convergence, slid pairs and shifted keystreams. As a result, the cipher may be vulnerable to distinguishing attacks, time-memory-data trade-off attacks or slide attacks.
Resumo:
It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs, but unfortunately their performance is extremely sensitive to state initialisation accuracy: good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded (R.J. Fitzgerald, 1971). When a filter diverges, it must be re initialised but because the observations are extremely poor, re initialised states will have poor estimates. The paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re started after divergence
Resumo:
A5-GMR-1 is a synchronous stream cipher used to provide confidentiality for communications between satellite phones and satellites. The keystream generator may be considered as a finite state machine, with an internal state of 81 bits. The design is based on four linear feedback shift registers, three of which are irregularly clocked. The keystream generator takes a 64-bit secret key and 19-bit frame number as inputs, and produces an output keystream of length between $2^8$ and $2^{10}$ bits. Analysis of the initialisation process for the keystream generator reveals serious flaws which significantly reduce the number of distinct keystreams that the generator can produce. Multiple (key, frame number) pairs produce the same keystream, and the relationship between the various pairs is easy to determine. Additionally, many of the keystream sequences produced are phase shifted versions of each other, for very small phase shifts. These features increase the effectiveness of generic time-memory tradeoff attacks on the cipher, making such attacks feasible.
Resumo:
Radial basis function networks can be trained quickly using linear optimisation once centres and other associated parameters have been initialised. The authors propose a small adjustment to a well accepted initialisation algorithm which improves the network accuracy over a range of problems. The algorithm is described and results are presented.
Resumo:
The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.
Resumo:
Current methods for initialising coupled atmosphere-ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-range Weather Forecasts coupled system, the magnitude and extent of these so-called initialisation shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialised by separate ocean and atmospheric analyses do exhibit initialisation shocks in lower atmospheric temperature, when compared to forecasts initialised using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialisation on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialisation shocks are found to follow a change in either the atmospheric or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.
Resumo:
Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.
Resumo:
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.