954 resultados para Inibidores de corrosão
Resumo:
Para aumentar os volumes de extração de petróleo, resolver e prevenir problemas nas operações de produção são utilizados diversos produtos químicos, dentre os quais se destacam os inibidores de corrosão, que são utilizados em toda cadeia produtiva do petróleo visando proteger o sistema da deterioração por corrosão. Os sais de amônio quaternário são uma das classes de inibidores mais utilizadas pela indústria do petróleo devido a sua grande eficiência. Entretanto, sua solubilidade em água faz com que estejam presentes na água produzida representando um risco para contaminação ambiental, visto que possuem baixa biodegrabilidade e potencial de bioacumulação. Como se encontram misturados a outros produtos químicos e sob efeitos das variações do ambiente em que são aplicados, definir um método de análise confiável e viável para monitoramento em linha representa um desafio para os laboratórios de campos de produção. Neste trabalho, foi estudado o emprego da fluorescência de ultravioleta na quantificação de um inibidor de corrosão do tipo sal de amônio quaternário em água. Foram obtidos espectros de emissão do produto comercial em água, além do estudo de variáveis instrumentais e interferentes presentes na água produzida. A comparação com padrões de sal de amônio quaternário permitiu identificar como principal fluorófilo, um sal alquil-aril de amônio quaternário. Estudos de estabilidade revelaram que a adsorção do inibidor de corrosão nas superfícies dos frascos plásticos provoca a queda do sinal fluorescente e que a adição de isopropanol reduz este efeito de 40 para 24%. Foram obtidas curvas de calibração com a formulação comercial e com o cloreto de 2-metil-4-dodecil-benzil-trimetil amônio com uma boa correlação. Amostras sintéticas do inibidor foram determinadas com um erro relativo de 2,70 a 13,32%. O método de adição padrão foi avaliado usando uma amostra de água produzida, e os resultados não foram satisfatórios, devido à interferência, principalmente, de compostos orgânicos aromáticos presentes
Resumo:
Inibidores de corrosão são substâncias que quando adicionadas a um meio agressivo, diminuem ou previnem a reação de oxidação de um metal com este meio e/ou as reações de redução de espécies presentes no meio. Para a inibição da corrosão de cobre e suas ligas em meios ácidos ou neutros, o inibidor mais empregado é o benzotriazol (BTAH), o qual forma complexos com os íons Cu (I) e Cu (II) na superfície do metal, diminuindo o processo corrosivo. A preocupação com a preservação ambiental e a toxicidade de inibidores de corrosão vem sendo discutida na literatura. Vários estudos têm-se intensificado usando aminoácidos, como proposta para substituição ao BTAH, considerado tóxico. Entre os aminoácidos estudados, dois apresentavam enxofre em suas moléculas (cisteína e metionina) e um outro sem heteroátomo na cadeira lateral (glicina). As concentrações variaram entre 10-2 a 10-4 mol/L e pH da solução entre 7,2 e 8,4. Foram realizadas medidas gravimétricas (ensaios de imersão total) e técnicas eletroquímicas, tais como polarização potenciodinâmica e espectroscopia de impedância eletroquímica. A caracterização morfológica da superfície do substrato após os ensaios de imersão total (743 horas) foi feita por meio de microscopia eletrônica de varredura (MEV), espectroscopia de raios X por dispersão de energia (EDS ou EDX) e difração de raios X (DRX). Embora os resultados com aminoácidos tenham sido sempre muito inferiores àqueles obtidos na presença de BTAH, comportamentos semelhantes em função da concentração dos aminoácidos puderam ser observados pelos diagramas de Nyquist. Contudo, com exceção dos resultados verificados para o meio contendo cisteína 10-2 mol/L, todas as eficiências de inibição para os meios contendo aminoácidos, obtidas pelos ensaios de imersão total, foram negativas, mostrando que o tempo de exposição também pode ser relevante para o desempenho destes inibidores. Entre todos os aminoácidos testados, os meios contendo glicina apresentaram os piores desempenhos anticorrosivos, inclusive acelerando o processo de dissolução anódica do cobre. Esse resultado pode estar relacionado à faixa de pH das soluções testadas e à solubilidade dos complexos de cobre formados com os aminoácidos, mostrando que uma faixa ótima de pH também deve ser assegurada para aprimorar a ação destes aminoácidos como inibidores de corrosão
Resumo:
In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA
Resumo:
This thesis has as objective presents a methodology to evaluate the behavior of the corrosion inhibitors sodium nitrite, sodium dichromate and sodium molybdate, as well as your mixture, the corrosion process for the built-in steel in the reinforced concrete, through different techniques electrochemical, as well as the mechanical properties of that concrete non conventional. The addition of the inhibitors was studied in the concrete in the proportions from 0.5 to 3.5 % regarding the cement mass, isolated or in the mixture, with concrete mixture proportions of 1.0:1.5:2.5 (cement, fine aggregate and coarse aggregate), superplasticizers 2.0 % and 0.40 water/cement ratio. In the modified concrete resistance rehearsals they were accomplished to the compression, consistence and the absorption of water, while to analyze the built-in steel in the concrete the rehearsals of polarization curves they were made. They were also execute, rehearsals of corrosion potential and polarization resistance with intention of diagnose the beginning of the corrosion of the armors inserted in body-of-proof submitted to an accelerated exhibition in immersion cycle and drying to the air. It was concluded, that among the studied inhibitors sodium nitrite , in the proportion of 2.0 % in relation to the mass of the cement, presented the best capacity of protection of the steel through all the studied techniques and that the methodology and the monitoring techniques used in this work, they were shown appropriate to evaluate the behavior and the efficiency of the inhibitors
Resumo:
An interesting development in surfactants science and technology is their application as corrosion inhibitors, since they act as protective films over anodic and cathodic surfaces. This work aims to investigate the efficiency of saponified coconut oil (SCO) as corrosion inhibitor and of microemulsified system (SCO + butanol + kerosene oil + distilled water), in saline medium, using an adapted instrumented cell, via techniques involving linear polarization resistance (LPR) and mass loss coupons (MLC). For this, curves of efficiency versus SCO concentration (ranging between 0 and 75 ppm) have been constructed. According to the obtained results, the following efficiency levels were reached with OCS: 98% at a 75 ppm concentration via the LPR method and 95% at 75 ppm via the MLC method. The microemulsified system, for a concentration of 15 ppm of SCO, obtained maximum inhibition of 97% (LPR) and 93% (MLC). These data indicate that it is possible to optimize the use of SCO in similar applications. Previous works have demonstrated that maximal efficiencies below 90% are attained, typically 65% as free molecules and 77% in microemulsified medium, via the LPR method in a different type of cell. Therefore, it can be concluded that the adapted instrumented cell (in those used methods) showed to be an important tool in this kind of study and the SCO was shown effective in the inhibition of the metal
Resumo:
Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers
Resumo:
Corrosion is a natural process that causes progressive deterioration of materials, so, reducing the corrosive effects is a major objective of development of scientific studies. In this work, the efficiency of corrosion inhibition on a AISI 1018 carbon steel of the nanoemulsion system containing the oil of the seeds of Azadirachta indica A. Juss (SNEOAI) was evaluated by the techniques of linear polarization resistance (LPR) and weight loss (CPM), a instrumented cell. For that, hydroalcoholic extract of leaves of A. indica (EAI) was solubilized in a nanoemulsion system (SNEOAI) of which O/W system (rich in aqueous phase). This nanoemulsion system (tested in different concentrations) was obtained with oil from the seeds of this plant species (OAI) (oil phase), dodecylammonium chloride (DDAC) (surfactant), butanol (cosurfactant) and water, using 30 % of C/T (cosurfactant/surfactant), 0.5 % of oil phase and 69.5 % of aqueous phase, and characterized by surface tension, rheology and droplet sizes. This systems SNEOAI and SNEOAI-EAI (nanoemulsion containing hydroalcoholic extract - EAI) showed inhibition efficiencies in corrosive environment in saline (1 %), for the method of LPR with significant value of 70.58 % (300 ppm) to SNEOAI, 74.17 % (100 ppm) and 72.51 % (150 ppm) to SNEOAI-EAI. The best efficiencies inhibitions were observed for the method of CPM with 85.41 % for the SNEOAI (300 ppm) and 83.19 % SNEOAI-EAI (500 ppm). The results show that this formulation could be used commercially for use as a corrosion inhibitor, this research contributed to the biotechnological applicability of Azadirachta indica, considering the large use of this plant species rich in limonoids (tetranortriterpenoids), especially azadirachtin
Resumo:
Corrosion usually occurs in pipelines, so that it is necessary to develop new surface treatments to control it. Surfactants have played an outstanding role in this field due to its capacity of adsorbing on metal surfaces, resulting in interfaces with structures that protect the metal at low surfactant concentrations. The appearance of new surfactants is a contribution to the area, as they increase the possibility of corrosion control at specific conditions that a particular oil field presents. The aim of this work is to synthesize the surfactants sodium 12 hydroxyocadecenoate (SAR), sodium 9,10-epoxy-12 hydroxyocadecanoate (SEAR), and sodium 9,10:12,13-diepoxy-octadecanoate (SEAL) and apply them as corrosion inhibitors, studying their action in environments with different salinities and at different temperatures. The conditions used in this work were chosen in order to reproduce oil field reality. The study of the micellization of these surfactants in the liquid-gas interface was carried out using surface tensiometry. It was observed that cmc increased as salt concentration was increased, and temperature and pH were decreased, while cmc decreased with the addition of two epoxy groups in the molecule. Using the values of cmc and the Gibbs equation, the values of Gibbs free energy of adsorption, area per adsorbed molecule, and surface excess were calculated. The surface excess increases as salt concentration and temperature decreases, increasing as pH is increased. The area per adsorbed molecule and the free energy of adsorption decrease with salt concentration, temperature, and pH increase. SAXS results showed that the addition of epoxy group in surfactant structure results in a decrease in the repulsion between the micelles, favoring the formation of more oblong micellar structures, ensuring a better efficiency of metal coverage. The increase in salt and surfactant concentrations provides an increase in micellar diameter. It was shown that the increase in temperature does not influence micellar structure, indicating thermal stability that is advantageous for use as corrosion inhibitor. The results of inhibition efficiency for the surfactants SEAR and SEAL were considered the best ones. Above cmc, adsorption occurred by the migration of micelles from the bulk of the solution to the metal surface, while at concentrations below cmc film formation must be due to the adsorption of semi-micellar and monomeric structures, certainly due to the presence of the epoxy group, which allows side interactions of the molecule with the metal surface. The metal resistance to corrosion presented values of 90% of efficiency. The application of Langmuir and Frumkin isotherms showed that the later gives a better description of adsorption because the model takes into account side interactions from the adsorbing molecules. Wettability results showed that micelle formation on the solid surface occurs at concentrations in the magnitude of 10-3 M, which isthe value found in the cmc study. This value also justifies the maximum efficiencies obtained for the measurements of corrosion resistance at this concentration. The values of contact angle as a function of time suggest that adsorption increases with time, due to the formation of micellar structures on metal surface
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA
Resumo:
This thesis has as objective presents a methodology to evaluate the behavior of the corrosion inhibitors sodium nitrite, sodium dichromate and sodium molybdate, as well as your mixture, the corrosion process for the built-in steel in the reinforced concrete, through different techniques electrochemical, as well as the mechanical properties of that concrete non conventional. The addition of the inhibitors was studied in the concrete in the proportions from 0.5 to 3.5 % regarding the cement mass, isolated or in the mixture, with concrete mixture proportions of 1.0:1.5:2.5 (cement, fine aggregate and coarse aggregate), superplasticizers 2.0 % and 0.40 water/cement ratio. In the modified concrete resistance rehearsals they were accomplished to the compression, consistence and the absorption of water, while to analyze the built-in steel in the concrete the rehearsals of polarization curves they were made. They were also execute, rehearsals of corrosion potential and polarization resistance with intention of diagnose the beginning of the corrosion of the armors inserted in body-of-proof submitted to an accelerated exhibition in immersion cycle and drying to the air. It was concluded, that among the studied inhibitors sodium nitrite , in the proportion of 2.0 % in relation to the mass of the cement, presented the best capacity of protection of the steel through all the studied techniques and that the methodology and the monitoring techniques used in this work, they were shown appropriate to evaluate the behavior and the efficiency of the inhibitors
Resumo:
In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)