984 resultados para Inhibitory compounds
Resumo:
Plants from Iryanthera genus have been traditionally used as food supplements by South American Indians. The MeOH extract of leaves of Iryanthera juruensis, one of the plants endemic to the Amazon region and consumed in Brazil, and the hexane extract from its seeds inhibited lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2)) enzymes in in vitro assays. Further analyses of these extracts yielded 5-deoxyflavones (1-5) from the leaf extract and sargachromenol (6), sargaquinoic acid (7), a novel juruenolic acid (8), omega-arylalkanoic acids (9a-c), and the lignan guaiacin (10) from the seed extract. Compounds 3-5 inhibited LPO by 86%, 77%, and 88% at 10 ppm, respectively, and compounds 6 and 9a-c showed inhibition at 76% and 78% at 100 ppm, respectively. However, compounds 7 and 8 were inactive and lignan 10 exhibited LPO inhibitory activity by 99% at 100 ppm compared to commercial antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and vitamin E. The flavones 1-5 also inhibited COX-1 and -2 enzymes by 50-65% at 100 ppm. Compound 6 showed high but nonselective inhibition of COX-1 and COX-2 enzymes, when compared to aspirin and Celebrex, a nonsteroidal anti-inflammatory drug (NSAID). Compounds 7 and 10 inhibited COX-1 by 60% and 65% and COX-2 by 37% and 18%, respectively, whereas compounds 8 and 9a-c showed little or no activity against these enzymes.
Resumo:
Sugarcane bagasse was pretreated with ozone to increase lignocellulosic material digestibility. Bagasse was ozonated in a fixed bed reactor at room temperature, and the effect of the two major parameters, ozone concentration and sample moisture, was studied. Acid insoluble and total lignin decreased whereas acid soluble lignin increased in all experiments. Pretreatment barely attacked carbohydrates, with cellulose and xylan recovery rates being >92%. Ozonolysis increased fermentable carbohydrate release considerably during enzymatic hydrolysis. Glucose and xylose yields increased from 6.64% and 2.05%, for raw bagasse, to 41.79% and 52.44% under the best experimental conditions. Only xylitol, lactic, formic and acetic acid degradation compounds were found, with neither furfural nor HMF (5-hydroxymethylfurfural) being detected. Washing detoxification provided inhibitor removal percentages above 85%, increasing glucose hydrolysis, but decreasing xylose yield by xylan solubilization. SEM analysis showed structural changes after ozonization and washing. © 2013 Elsevier Ltd.
Resumo:
Wydział Biologii: Instytut Biologii Molekularnej i Biotechnologii
Resumo:
This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.
Resumo:
The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 A degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).
Resumo:
An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.
Resumo:
O presente trabalho tem como objetivo a otimização da etapa de fermentação dos açúcares obtidos a partir da drêche cervejeira para produção do bioetanol através da utilização das leveduras Pichia stipitis NCYC 1541 e Kluyveromyces marxianus NCYC 2791 como agentes fermentativos. O meio de cultura usado para manter as culturas destas leveduras foi Yeast Extract Peptone Dextrose (YEPD). O principal propósito deste trabalho foi o de encontrar alternativas aos combustíveis fósseis, pautando-se por soluções inofensivas para o meio ambiente e sustentáveis. Assim, o trabalho está dividido em quatro etapas: 1) caraterização química e biológica da drêche; 2) pré-tratamento ácido e hidrólise enzimática para primeiramente quebrar as moléculas de lenhina que envolvem os polímeros de celulose e hemicelulose e em seguida romper as ligações poliméricas destas macromoléculas por ação enzimática e transforma-las em açúcares simples, respetivamente, obtendo-se então a glucose, a maltose, a xilose e a arabinose; e, por último, 3) otimização da etapa de fermentação da glucose, maltose e das pentoses que constitui a condição essencial para se chegar à síntese do bioetanol de um modo eficiente e sustentável e 4) a recuperação do bioetanol produzido por destilação fracionada. A quantificação dos açúcares libertados no processo foi feita recorrendo a análises por cromatografia líquida de alta eficiência (HPLC). Neste estudo foram identificados e quantificados cinco açúcares: Arabinose, Glucose, Maltose, Ribose e Xilose. Na etapa de pré-tratamento e hidrólise enzimática foram usados os ácidos clorídrico (HCl) e nítrico (HNO3) com a concentração de 1% (m/m), e as enzimas Glucanex 100g e Ultraflo L. Foram testadas seis condições de pré-tratamento e hidrólise enzimática, alterando os parâmetros tempo de contacto e razão enzimas/massa de drêche, respetivamente, e mantendo a temperatura (50 ºC), velocidade de agitação (75 rpm) e concentração dos ácidos (1% (m/m)). No processamento de 25 g de drêche seca com 0,5 g de Glucanex, 0,5 mL de Ultraflo e um tempo de reação de 60 minutos para as enzimas foi obtida uma eficiência de 15%, em hidrolisado com 6% da celulose. Realizou-se a fermentação do hidrolisado resultante do pré-tratamento ácido e hidrólise enzimática de drêche cervejeira e de meios sintéticos preparados com os açúcares puros, usando as duas estirpes selecionadas para este estudo: Pichia stipitis NCYC 1541 e Kluyveromyces marxianus NYCY 2791. As eficiências de fermentação dos açúcares nos meios sintéticos foram superiores a 80% para ambas as leveduras. No entanto, as eficiências de fermentação do hidrolisado da drêche foram de 45,10% pela Pichia stipitis e de 36,58 para Kluyveromyces marxianus, para um tempo de fermentação de 72 horas e à temperatura de 30 °C. O rendimento teórico em álcool no hidrolisado da drêche é de 0,27 g/g, três vezes maior do que o real (0,0856 g/g), para Pichia stipitis e de 0,19 g/g seis vezes maior do que o real (0,0308 g/g), para a Kluyveromyces marxianus.
Resumo:
In the present study PCR was applied to detect leptospires in human urine. Several approaches for sample processing were evaluated to optimize the detection of leptospires in urine mixed with this bacterium. Furthermore, some changes in the composition of the reaction mix were studied. No amplification was observed in acidic urine, therefore neutralization of the sample immediately after collection is strongly recommended. PBS gave better results than Tris or NaOH as neutralizing reagents. Freezing and thawing of samples before processing yielded negative results. Elimination of epithelial cells, leukocytes and crystals by centrifugation at 3,000 rpm at room temperature increased sensitivity. In addition, both the washing step after collecting leptospires by centrifugation and the inclusion of 0.1% bovine serum albumin in the reaction mix minimized the interference of other inhibitory compounds. These modifications were useful to improve the detection of Leptospira in urine by PCR.
Resumo:
Trichoderma spp are effective competitors against other fungi because they are mycoparasitic and produce hydrolytic enzymes and secondary metabolites that inhibit the growth of their competitors. Inhibitory compounds produced by Trichoderma aggressivum, the causative agent of green mold disease, are more toxic to the hybrid off-white strains of Agaricus bisporus than the commercial brown strains, consistent with the commercial brown strain’s increased resistance to the disease. This project looked at the response of hybrid off-white and commercial brown strains of A. bisporus to the presence of T. aggressivum metabolites with regard to three A. bisporus genes: laccase 1, laccase 2, and manganese peroxidase. The addition of T. aggressivum toxic metabolites had no significant effect on MnP or lcc1 transcript abundance. Alternatively, laccase 2 appears to be involved in resistance to T. aggressivum because the presence of T. aggressivum metabolites results in higher lcc2 transcript abundance and laccase activity, especially in the commercial brown strain. The difference in laccase expression and activity between A. bisporus strains was not a result of regulatory or coding sequence differences. Alteration of laccase transcription by RNAi resulted in transformants with variable levels of laccase transcript abundance. Transformants with a low number of lcc transcripts were very sensitive to T. aggressivum toxins, while those with a high number of lcc transcripts had increased resistance. These results indicated that laccase activity, in particular that encoded by lcc2, serves as a defense response of A. bisporus to T. aggressivum toxins and contributes to green mold disease resistance in commercial brown strains.
Resumo:
Pathogenic microorganisms such as Bacillus cereus, Listeria Monocytogenes and Staphylococcus sp have caused serious diseases, and consequently contributed to considerable economic loss in the food and agricultural industries. Antibiotics have been practically used to treat these pathogens since penicillin G was discovered more than half a century ago. Many different types of antibiotics have been discovered or synthesized to control pathogenic microorganisms. Repetitive use and misuse of antibiotics by the agricultural and pharmaceutical industries have caused the emergence of multidrug-resistant microorganisms, even to the strongest antibiotics currently available; therefore, the rapid development of more effective antimicrobial compounds is required to keep pace with demand. Bacteria were isolated from marine water and sediment samples collected from various locations off the coast of Cochin and salt pans of Tuticorin using pour plate technique. One hundred and twelve isolates were obtained. Seventeen isolates exhibiting antimicrobial activity were segregated after primary screening. The secondary screening which was aimed at selection of bacteria that produce proteinaceous inhibitory compounds, helped to select five strains viz. BTFK101, BTHT8, BTKM4, BTEK16 and BTSB22. The five isolates inhibited the growth of six Gram positive test organisms viz. B. cereus, B. circulans, B. coagulans, B. pumilus, Staphylococcus aureus and Clostridium perfringens. After quantitative estimation of the bacteriocin production, the two strains BTFK101 and BTHT8 were selected for further study.
Resumo:
GP catalyzes the phosphorylation of glycogen to Glc-1-P. Because of its fundamental role in the metabolism of glycogen, GP has been the target for a systematic structure-assisted design of inhibitory compounds, which could be of value in the therapeutic treatment of type 2 diabetes mellitus. The most potent catalytic-site inhibitor of GP identified to date is spirohydantoin of glucopyranose (hydan). In this work, we employ MD free energy simulations to calculate the relative binding affinities for GP of hydan and two spirohydantoin analogues, methyl-hydan and n-hydan, in which a hydrogen atom is replaced by a methyl- or amino group, respectively. The results are compared with the experimental relative affinities of these ligands, estimated by kinetic measurements of the ligand inhibition constants. The calculated binding affinity for methyl-hydan (relative to hydan) is 3.75 +/- 1.4 kcal/mol, in excellent agreement with the experimental value (3.6 +/- 0.2 kcal/mol). For n-hydan, the calculated value is 1.0 +/- 1.1 kcal/mol, somewhat smaller than the experimental result (2.3 +/- 0.1 kcal/mol). A free energy decomposition analysis shows that hydan makes optimum interactions with protein residues and specific water molecules in the catalytic site. In the other two ligands, structural perturbations of the active site by the additional methyl- or amino group reduce the corresponding binding affinities. The computed binding free energies are sensitive to the preference of a specific water molecule for two well-defined positions in the catalytic site. The behavior of this water is analyzed in detail, and the free energy profile for the translocation of the water between the two positions is evaluated. The results provide insights into the role of water molecules in modulating ligand binding affinities. A comparison of the interactions between a set of ligands and their surrounding groups in X-ray structures is often used in the interpretation of binding free energy differences and in guiding the design of new ligands. For the systems in this work, such an approach fails to estimate the order of relative binding strengths, in contrast to the rigorous free energy treatment.
Resumo:
Analysis of microbial gene expression during host colonization provides valuable information on the nature of interaction, beneficial or pathogenic, and the adaptive processes involved. Isolation of bacterial mRNA for in planta analysis can be challenging where host nucleic acid may dominate the preparation, or inhibitory compounds affect downstream analysis, e.g., quantitative reverse transcriptase PCR (qPCR), microarray, or RNA-seq. The goal of this work was to optimize the isolation of bacterial mRNA of food-borne pathogens from living plants. Reported methods for recovery of phytopathogen-infected plant material, using hot phenol extraction and high concentration of bacterial inoculation or large amounts of infected tissues, were found to be inappropriate for plant roots inoculated with Escherichia coli O157:H7. The bacterial RNA yields were too low and increased plant material resulted in a dominance of plant RNA in the sample. To improve the yield of bacterial RNA and reduce the number of plants required, an optimized method was developed which combines bead beating with directed bacterial lysis using SDS and lysozyme. Inhibitory plant compounds, such as phenolics and polysaccharides, were counteracted with the addition of high-molecular-weight polyethylene glycol and hexadecyltrimethyl ammonium bromide. The new method increased the total yield of bacterial mRNA substantially and allowed assessment of gene expression by qPCR. This method can be applied to other bacterial species associated with plant roots, and also in the wider context of food safety.
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Turtles are among the most endangered vertebrate groups, and the main threats to populations are environmental pollution and habitat degradation. The species Phrynops geoffroanus, popularly known as “Geoffroy’s side-necked turtle”, has proliferated in polluted environments, where adverse conditions could influence their living habits and physiological condition. Studies that monitor the effects of environmental pollution are key to understanding the species’ biology and designing effective conservation strategies. Thus, the analysis of hematological and biochemical parameters has been shown to be important in assessing the health of wild animals and risks for the animal and ecosystem. This study aimed to assess the environmental influence on the physiology of a P. geoffroanus population through the evaluation of antioxidant status and responses to environmental stressors, compared to specimens from a place under controlled conditions. Blood samples of 60 specimens were collected, 30 from the Felicidade Stream, polluted environment, within the city of São José do Rio Preto, and 30 from the “Reginaldo Uvo Leone” breeding farm, Tabapuã, SP, a place under controlled conditions, whose samples constituted the control group. They were evaluated by hemogram and by determining thiobarbituric acid reactive species (TBARS), Trolox-equivalent antioxidant capacity (TEAC) and the activities of the antioxidant enzymes catalase and glucose-6-phosphate dehydrogenase (G6PDH). There was a wide variation in hematological parameters of P. geoffroanus from the urban environment. The red blood cell count and hemoglobin values were significantly less than those observed in animals from the breeding farm (P = 0.0004; P = 0.0371, respectively). There was a significant increase in the number of thrombocytes (P < 0.0001) and leukocytes (P < 0.0001) in the animals from Felicidade Stream. The stress indices were similar between the two groups (P = 0.4077). TBARS levels showed the cytotoxic potential of compounds in the urban environment, whose animals had elevated levels of lipid peroxidation (P < 0.0001), despite showing a response to environmental damages with increase in antioxidant capacity, as demonstrated by the TEAC assay (P = 0.0207). The lower catalase enzyme activity noted in individuals from the urban environment (P = 0.000184) could be due to the presence of inhibitory compounds. On the other hand, G6PDH activity was higher (P = 0.002962), where this enzyme acts in the generation of NADPH, which is used in several detoxification pathways. We conclude that environmental contamination can increase oxidative damages and generate physiological changes in this species. These data are very useful for the conservation of P. geoffroanus and turtles in general, and confirm that these techniques are effective in monitoring natural regions and that P. geoffroanus can serve as an environmental contamination bioindicator.