992 resultados para Ingenieros de sistemas


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Administración con Especialidad en Sistemas) U.A.N.L.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

En forma general se puede considerar la Ingeniería de Sistemas como aquella ingeniería encargada de la planeación científica, diseño, construcción y evaluación de sistemas hombre-hombre u hombre-máquina. Subyacente a esta idea y de gran importancia para los ingenieros de sistemas está la información. Ella es el vehículo mediante el cual se establece el sistema. En éste, la información forma un subsistema conocido como sistema de información.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El siglo XXI está cada vez más cerca. Los avances en los sistemas y en las telecomunicaciones ponen de manifiesto maneras cada vez más ágiles y eficientes para facilitar las comunicaciones entre los seres humanos. Ante esta gran ola de avances, ¿qué actitud y qué responsabilidades debe asumir el gremio de los ingenieros de sistemas? La intención de este artículo es presentar una visión de los servicios y tendencias que en cuanto a comunicación se están vislumbrando desde ahora, y concluir estableciendo algunas de las acciones que los ingenieros de sistemas debemos tomar para aprovechar esta revolución en beneficio del mundo entero.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las TIC han impactado en el funcionamiento de las organizaciones y han aportado a su proceso evolutivo, generando diversos efectos de acuerdo a la función que estas cumplen dentro de la organización. Las TIC como consecuencia se convierten en una estrategia de gestión en un entorno complejo donde permiten alcanzar mejoras en la organización social, la actividad económica, el bienestar y el acceso a la información y el conocimiento. (Cáceres Carrasco & Aceytuno Pérez, 2008)Con el fin de entender los beneficios de las TIC, se deben brindar a los directores herramientas que permitan formular modelos de negocios efectivos de cara a los mercados y enfocadas a la satisfacción de los clientes. Adicionalmente, para las organizaciones el añadir valor, no sólo hace referencia al servicio que están prestando; hay otros factores diferentes al uso de herramientas TIC y la innovación que también son igual de importantes como: los procesos de apoyo, de gestión que se encuentran de fondo y que hacen posible brindar un servicio al mercado, en estos procesos se encuentran aplicaciones de procedimientos amigables y fáciles de articular, temas como la responsabilidad empresarial, relación y comunicación con competidores dentro del mismo sector, es justamente en las relaciones con los clientes, que las TIC y el uso de Internet puede tener incidencia en los modelos de negocios a través de actividades como el comercio electrónico, el mercadeo electrónico, el mercadeo en línea entre otros. Existen investigaciones acerca de estos temas: innovación, TI, pero no se han establecido relaciones entre ellos, debido a su novedad. Diferentes experiencias laborales de los investigadores en el uso de las TIC como herramienta en la organización de información permiten que surja la idea de llevar a cabo este proyecto abarcando la realidad bogotana de las MiPyme. La presente investigación con un enfoque cualitativo hace una revisión bibliográfica, y bajo la mirada teórica se analiza la relación que tienen los factores de desarrollo que se evidenciaron como son la innovación y el uso de herramientas TIC, como variables dependientes de la productividad de las MiPyme en Bogotá, Colombia, involucrando temas que se relacionan con distintos campos como la tecnología, políticas gubernamentales, y economía.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En los últimos años se han llevado a cabo una gran cantidad de investigaciones en el área de arquitectura de software, buscando principalmente una forma de representación de un sistema que supere la informalidad de las líneas y cajas pero que a la vezsirva de medio de comunicación con los diferentes interesados en el proyecto, es decir, que no sea demasiado complejo. El desarrollo de lenguajes de descripción de Arquitecturas da alos ingenieros de sistemas una nueva herramienta para la acertada representación de la arquitectura de un sistema; sin embargo, los lenguajes desarrollados actualmente por lo generalson muy complejos o solo se adaptan a un tipo particular de sistemas. En este artículo se presenta una forma de representación de la arquitectura de software basada en UML, aprovechando las ventajas de este lenguaje de modelamiento e incluyendo varias estructuras que facilitan la representación de amplia variedad de sistemas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este proyecto de investigación tiene como objetivo evaluar, en la ciudad de Cali, la incidencia que han tenido los programas académicos universitarios en la decisión de sus egresados de convertirse en empresarios y/o de generar nuevos proyectos al interior de las organizaciones para las cuales trabajan. Los resultados de esta investigación permitirán formular recomendaciones concretas para que los programas académicos cumplan efectivamente con su misión de formar profesionales con Espíritu Empresarial. Este proyecto permitirá también desarrollar una metodología de evaluación de este tipo de programas y los resultados obtenidos servirán como punto de referencia para dichas evaluaciones.Específicamente el proyecto abarca los siguientes programas académicos: Administración de Empresas e Ingeniería de Sistemas de la Universidad Icesi, Administración de Empresas e Ingeniería Industrial de la Universidad del Valle, Administración de Empresas e Ingeniería Industrial de la Universidad Javeriana Seccional Cali. Este artículo muestra los resultados obtenidos en la primera etapa de este proyecto, que consistió en un sondeo telefónico con una muestra de 500 egresados de la Universidad Icesi. El sondeo dio como resultado que el 9% de los Ingenieros de Sistemas, el 14% de los Administradores de Empresas del programa diurno y el 23% de los Administradores de Empresas del programa nocturno se dedican totalmente a la actividad empresarial. Además, un 3% de los Ingenieros de Sistemas, un 6% de los Administradores de Empresas del programa diurno y un 7% de los Administradores de Empresas del programa nocturno son simultáneamente empleados y empresarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graduamos en esta sencilla y solemne ceremonia 165 profesionales, de pre y postgrado: 70 Administradores, 19 ingenieros de Sistemas, 18 Magísteres en Administración, 32 Especialistas en Empresas Comerciales, 1 en Mercadeo, 1 en Finanzas y 24 en Negocios Internacionales. Con ellos cumplimos la principal misión que nos han encomendad la comunidad, el país y nuestros fundadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El planteamiento inicial del plan de negocios para Tamarindo Seco tiene como objetivo encontrar oportunidades de negocio con los productos actuales para involucrase y aportar al sector de consumo masivo en lo que se refiere a la alimentación saludable, con el único fin de cumplir un propósito superior, promover una cultura medio ambiental sostenible a través de la modificación en el manejo que se le da a los desperdicios que genera el consumo masivo de alimentos en Colombia y la región. Teniendo una trazabilidad de los productos que permitan tener políticas de comercio justo con cada uno de los implicados en el proceso productivo como comercial.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El presente estudio compara el grado de desarrollo de competencias requeridas para el desarrollo de proyectos de investigación por estudiantes de ingeniería de la Universidad Autónoma de Nuevo León (UANL). Utilizando una muestra de 70 estudiantes de los programas educativos Ingeniero Administrador de Sistemas (IAS) e Ingeniero Mecánico Administrador (IMA) de la Facultad de Ingeniería Mecánica y Eléctrica (FIME) de la UANL. Se realizó un análisis exploratorio estudiando los datos cuantitativos mediante estadística descriptiva. Los resultados de la investigación permiten observar las características de los estudiantes de cada carrera y lo que fortalece su perfil profesional hacia la investigación de los estudiantes de la carrera Ingeniero Administrador de Sistemas (IAS) e Ingeniero Mecánico Administrador (IMA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este proyecto fin de carrera es ajustar el perfil generado por un sistema fotovoltaico con orientación este-oeste que dispone de una batería al perfil de demanda de distintas industrias en Alemania. Se ha puesto especial énfasis a los siguientes paquetes de trabajo: • Comparación de la eficiencia de un sistema fotovoltaico este-oeste frente a los resultados obtenidos con la típica orientación sur • Simulación de una instalación fotovoltaica este-oeste con una batería en una industria, basada en el software MATLAB / Simulink • Optimización económica. Los resultados obtenidos muestran que nunca es económico instalar un campo fotovoltaico este-oeste en vez de una instalación con orientación sur, en caso de que la única ventaja esperada sea el ensanche de la curva de generación de potencia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Administración con Especialidad en Relaciones Industriales) UANL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este texto buscamos sentar las bases para el marco teórico de la ingeniería de sistemas complejos. Hasta la fecha, un marco semejante ha sido apenas enunciado, y en términos bastante generales (Wolfram, 1986). Sin embargo, hasta ahora no se ha logrado formular un marco semejante que sirva a los ingenieros, a los científicos y a los filósofos para afirmar con seguridad que se tiene ya un marco teórico para la ingeniería de sistemas complejos. Al sentar el siguiente marco trazamos claramente los límites que separan a la ingeniería clásica −incluida la ingeniería de procesos inversos− de la ingeniería de sistemas complejos. Nos encontramos en el centro de una revolución científica y teórica, en términos de T. Kuhn. Luego de separar, de manera rápida, la ingeniería clásica de la ingeniería de sistemas complejos, obtenemos una visión más clara acerca de la ingeniería bio-inspirada. A fin de plantear de manera radical un (nuevo) marco teórico para la ingeniería de sistemas complejos (ISC), procedemos en zigzag así: de un lado, sobre una base al mismo tiempo científica e ingenieril, sugerimos un perímetro orgánico para la ISC; de otra parte, sobre la base de la filosofía y las lógicas no-clásicas, alcanzamos nuevas herramientas conceptuales que profundizan las bases científicas e ingenieriles. Al final se hace claro el horizonte amplio y la visión acerca del marco de la ingeniería de sistemas complejos, a saber: se trata, ulteriormente, de una teoría general de los sistemas complejos. Así, la ISC forma parte de las ciencias de la complejidad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desde la inauguración del Portal Suba de TransMilenio, han sido evidentes los cambios físico-espaciales en el sector donde fue implementado, materializándose en nuevos proyectos residenciales de alta densidad, centros comerciales, supermercados de grandes superficies, espacios públicos, y vías locales y principales, en un sector que antes de la aparición del portal se caracterizaba principalmente por ser una zona agro-industrial dedicada al cultivo de flores. No obstante, tales intervenciones parecen estar desarticuladas entre si. Por ejemplo, el centro comercial y el supermercado siguen un patrón de construcción cerrada, sin interacción abierta con el espacio público exterior y sin establecer otro tipo de dinámicas urbanas. Por otra parte, puede decirse que gracias a la implementación del portal, la estructura ecológica principal ha sufrido un deterioro importante siendo observable en la disminución significativa de zonas verdes así como en el descuido de los humedales localizados en esta localidad. Por lo tanto, es importante hacer hincapié en la relación sistemas de transporte – desarrollo urbano en tanto que son agentes transformadores del entorno, generadores de desarrollo y bienestar social, y catalizadores de espacios públicos mejor diseñados y más amables, de ser bien planificados y ejecutados, ya que, caso contrario, podrían acarrear efectos contraproducentes en cuanto a la articulación física de la ciudad, accesibilidad, segregación social y el impacto negativo sobre el medio ambiente.