417 resultados para Infusions
Resumo:
It is well established that morphine inhibits maternal behaviors. Previous studies by our group have shown activation of the rostrolateral periaqueductal gray (rlPAG) upon inhibition-intended subcutaneous injections of morphine. In this context, we demonstrated that a single naloxone infusion into the rlPAG, following this opioid-induced inhibition, reactivated maternal behaviors. Since these data were obtained by using peripheral morphine injections, the present study was designed to test whether morphine injected directly into the rlPAG would affect maternal behaviors. Our hypothesis that morphine acting through the rlPAG would disrupt maternal behaviors was confirmed with a local infusion of morphine. The mothers showed shorter latency for locomotor behavior to explore the home cage (P = 0.049). Inhibition was especially evident regarding retrieving (P = 0.002), nest building (P = 0.05) and full maternal behavior (P = 0.023). These results support the view that opioidergic transmission plays a behaviorally meaningful inhibitory role in the rostrolateral PAG.
Resumo:
Processed tea and herbal infusions were Studied for their phenol content, antioxidant activity and main flavonoids. Total phenolics were determined by Folin-Ciocalteu method and ranged from N.D. to 46.46 +/- 0.44 mg/g GAE. Flavonoids were investigated by HPLC, and myricetin, quercetin, kaempferol were identified in black, green, and chamomile tea. Antioxidant activity was evaluated using two methods: DPPH and beta-carotene bleaching test (BCB). Using the BCB, the highest activities were found for infusions of black tea, mate, lemongrass, chamomile, and fennel; whereas fresh herbal infusions presented the lowest activities. Using the DPPH method, fresh herbal infusions presented the highest activities. Processed leaves with the lowest IC50 values were green and black tea (147.63 and 288.60 mu g/mL, respectively). The results of this research show that the infusions studied are good Source of compounds presenting antioxidant activity in vitro.
Resumo:
Tabebuia incana A.H. Gentry (Bignoniaceae) is a tree from the Brazilian Amazon having medicinal uses and is one several Tabebuia spp. known as pau d'arco or palo de arco in this region. Fractionation of the bark ethanolic extract afforded a mixture of 5 and 8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-diones (1 and 2, respectively) identified on the basis of nuclear magnetic resonance (NMR), infrared (IR) and mass (MS) spectra, whose in vitro antimalarial and antitumor activity have been shown previously. This is the first study on T. incana bark, and 2 are described in this species for the first time. Also, high performance liquid chromatography (HPLC) analysis of T. incana bark tea revealed the presence of the 1 + 2 mixture peak corresponding to a concentration in the range 10-6-10-5 M. The chromatograms of teas prepared from commercial pau d' arco and T. incana bark were also studied and the presence of the 1 + 2 peak has potential for quality control of commercial plant materials.
Resumo:
Due to the enormous variety of phytochemicals present in plants, their extracts have been used for centuries in the treatment of innumerous diseases, being perceived as an invaluable source of medicines for humans. Furthermore, the combination of different plants was reported as inducing an improved effect (synergism) in comparison to the additive activity of the plants present in those mixtures. Nevertheless, information regarding the effects of plant infusions added with honey is still rather scarce. Accordingly, the aim of this study was evaluating the interaction between chestnut honey, a natural product with well-reported beneficial properties, and three medicinal plants (either as single plant or as combinations of two and three plants), with regard to their antioxidant activity and hepatotoxicity. Antioxidant activity was evaluated by comparing the results from four different assays; the hepatotoxicity was assessed in two different cell lines. Results were compared by analysis of variance and linear discriminant analysis. The addition of honey to the infusions had a beneficial result in both cases, producing a synergistic effect in all samples, except beta-carotene bleaching inhibition for artichoke+milk thistle+honey preparation and also preparations with lower hepatotoxicity, except in the case of artichoke+honey. Moreover, from discriminant linear analysis output, it became obvious that the effect of honey addition overcame that resulting from using single plant or mixed plants based infusions. Also, the enhanced antioxidant activity of infusions containing honey was convoyed by a lower hepatotoxicity.
Resumo:
In this retrospective pragmatic study, we define the necessary conditions that allow outpatient low dose intravenous neuroleptization, when hospitalization should otherwise be required. Intravenous neuroleptization is infrequently used in the outpatient treatment of acute psychotic decompensation. Rapid tranquilization with high dosage neuroleptics is controversial, and has a high risk of side effects. The indications for and potential advantages of this method in the perspective of a long-term ambulatory treatment are discussed by comparing a group of outpatients treated with infusions to a group of hospitalized patients. The method offers a satisfactory alternative to hospitalization for subjects who are not in imminent danger (current GAF rating between 20 and 40) and whose normal functioning is good (past year GAF rating = 70). Previous repeated hospitalizations favor the choice of hospitalization over infusion. Its potential advantages are the rapid evolution of the condition, with controlled regression but without psychosocial withdrawal, and an improvement in the patient's attitude towards treatment.
Resumo:
The effect of graded levels of hyperinsulinemia on energy expenditure, while euglycemia was maintained by glucose infusion, was examined in 22 healthy young male volunteers by using the euglycemic insulin clamp technique in combination with indirect calorimetry. Insulin was infused at five rates to achieve steady-state hyperinsulinemic plateaus of 62 +/- 4, 103 +/- 5, 170 +/- 10, 423 +/- 16, and 1,132 +/- 47 microU/ml. Total body glucose uptake during each of the five insulin clamp studies was 0.41, 0.50, 0.66, 0.74, and 0.77 g/min, respectively. Glucose storage (calculated from the difference between total body glucose uptake minus total glucose oxidation) was 0.25, 0.29, 0.43, 0.49, and 0.52 g/min for each group, respectively, and represented over 60-70% of total glucose uptake. The net increment in energy expenditure after intravenous glucose was 0.08, 0.10, 0.14, 0.17, and 0.23 kcal/min, respectively. Throughout the physiological and supraphysiological range of insulinemia, there was a significant relationship (r = 0.95, P less than 0.001) between the increment in energy expenditure and glucose storage, indicating an energy cost of 0.45 kcal/g glucose stored. However, at each level of hyperinsulinemia, the theoretical value for the energy cost of glucose storage (assuming that all of the glucose is stored in the form of glycogen) could account for only 45-63% of the actual increase in energy expenditure that was measured by indirect calorimetry. These results indicate that factors in addition to glucose storage as glycogen must be responsible for the increase in energy expenditure that accompanies glucose infusion.
Resumo:
Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
BACKGROUND: Fish oil (FO) has antiinflammatory effects, which might reduce systemic inflammation induced by a cardiopulmonary bypass (CPB). OBJECTIVE: We tested whether perioperative infusions of FO modify the cell membrane composition, inflammatory responses, and clinical course of patients undergoing elective coronary artery bypass surgery. DESIGN: A prospective randomized controlled trial was conducted in cardiac surgery patients who received 3 infusions of 0.2 g/kg FO emulsion or saline (control) 12 and 2 h before and immediately after surgery. Blood samples (7 time points) and an atrial biopsy (during surgery) were obtained to assess the membrane incorporation of PUFAs. Hemodynamic data, catecholamine requirements, and core temperatures were recorded at 10-min intervals; blood triglycerides, nonesterified fatty acids, glucose, lactate, inflammatory cytokines, and carboxyhemoglobin concentrations were measured at selected time points. RESULTS: Twenty-eight patients, with a mean ± SD age of 65.5 ± 9.9 y, were enrolled with no baseline differences between groups. Significant increases in platelet EPA (+0.86%; P = 0.0001) and DHA (+0.87%; P = 0.019) were observed after FO consumption compared with at baseline. Atrial tissue EPA concentrations were higher after FO than after control treatments (+0.5%; P < 0.0001). FO did not significantly alter core temperature but decreased the postoperative rise in IL-6 (P = 0.018). Plasma triglycerides increased transiently after each FO infusion. Plasma concentrations of glucose, lactate, and blood carboxyhemoglobin were lower in the FO than in the control group on the day after surgery. Arrhythmia incidence was low with no significant difference between groups. No adverse effect of FO was detected. CONCLUSIONS: Perioperative FO infusions significantly increased PUFA concentrations in platelet and atrial tissue membranes within 12 h of the first FO administration and decreased biological and clinical signs of inflammation. These results suggest that perioperative FO may be beneficial in elective cardiac surgery with CPB. This trial was registered at clinicaltrials.gov as NCT00516178.
Resumo:
OBJECTIVE: To emphasize that complex regional pain syndrome (CRPS), a disabling disorder with the implication of aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity, might be treated with a high dose of intravenous immunoglobulin infusions (IVIG). METHODS: We describe a patient who presented with CRPS in the acute phase of the disease. RESULTS: The CRPS developed secondary to sciatic compression in a young patient and was treated within 10 days by high-dose IVIG (2 g/kg). It resolved completely within days after infusions. DISCUSSION: This observational study emphasizes that high-dose IVIG may be a treatment option in the acute phase of CRPS.
Resumo:
The thermogenic response induced by glucose/insulin administered intravenously was examined in 22 healthy male volunteers using indirect calorimetry in combination with the euglycaemic insulin clamp technique. Five increasing steady state levels of insulinaemia (62 muU/ml to 1132 muU/ml) were achieved by means of continuous infusions of insulin at 5 rates ranging from 0.5 mU/kg.min to 10 mU/kg.min. Euglycaemia was maintained at each insulin level by infusing glucose at different rates ranging from steady state values of 0.41 g/min to 0.77 g/min. These glucose/insulin infusions resulted in a significant net rise in resting energy expenditure from 0.33 kJ/min to 0.94 kJ/min over preinfusion baseline values for the lowest and the highest doses respectively. There was a highly significant relationship (r = 0.93, p<0.001, n = 42) between the amount of glucose infused and the net increase in energy expenditure over preinfusion baseline values. Intravenous glucose induced thermogenesis (GIT(iv)) was calculated as incremental values of energy expenditure related to step changes in glucose infusion rates. GIT(iv) was found to be approximately 5.5% a physiological plasma insulin levels (i.e. below 200 muU/ml) whereas at supraphysiological levels (i.e.>400 muU/ml) GIT(iv) was increased up to 8%. It was concluded that: 1. the magnitude of the GIT(iv) at physiological insulinaemia was similar to that found by other investigators who have administered glucose per os; 2. the elevated thermogenesis observed at high doses of glucose/insulin infusion is consistent with recent clinical findings showing a markedly increased energy expenditure in patients supported by large quantities of intravenous glucose (TPN).
Resumo:
Two doses of synthetic atrial natriuretic peptide (0.5 and 5.0 micrograms/min) and its vehicle were infused intravenously for 4 hours in eight salt-loaded normal volunteers, and the effect on blood pressure, heart rate, renal hemodynamics, solute excretion, and secretion of vasoactive hormones was studied. The 0.5 micrograms/min infusion did not alter blood pressure or heart rate, whereas the 5.0 micrograms/min infusion significantly reduced the mean pressure by 20/9 mm Hg after 2.5 to 3 hours and increased the heart rate slightly. Inulin clearance was not significantly changed, but the mean p-aminohippurate clearance fell by 13 and 32% with the lower and higher doses, respectively. Urinary excretion of sodium and chloride increased slightly with the lower dose. With the higher dose, a marked increase in urinary excretion of sodium, chloride, and calcium was observed, reaching a peak during the second hour of the infusion. Potassium and phosphate excretion did not change significantly. A brisk increase in urine flow rate and fractional water excretion was seen only during the first hour of the high-dose infusion. Signs and symptoms of hypotension were observed in two subjects. No change in plasma renin activity, angiotensin II, or aldosterone was observed during either infusion, but a marked increase occurred after discontinuation of the high-dose infusion. In conclusion, the 5 micrograms/min infusion induced a transient diuretic effect, delayed maximal natriuretic activity, and a late fall in blood pressure, with no change in inulin clearance but a dose-related decrease in p-aminohippurate clearance. Despite large amounts of sodium excreted and blood pressure reduction, no counterregulatory changes were observed in the renin-angiotensin-aldosterone system or plasma vasopressin levels during the infusion.
Resumo:
We present a case study of a patient with pure autonomic failure who was successfully treated with ambulatory norepinephrine (NE) infusions over a 9-year-period of time before death occurred unexpectedly. Given this patient's response to the NE infusion treatment, we discuss the option of ambulatory NE infusions as a treatment for severe orthostatic hypotension that is refractory to common treatments.
Resumo:
We evaluated the effects of infusions of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) on the formation and expression of memory for inhibitory avoidance. Adult male Wistar rats (215-300 g) were implanted under thionembutal anesthesia (30 mg/kg, ip) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Bilateral infusions of AP5 (5.0 µg) were given 10 min prior to training, immediately after training, or 10 min prior to testing in a step-down inhibitory avoidance task (0.3 mA footshock, 24-h interval between training and the retention test session). Both pre- and post-training infusions of AP5 blocked retention test performance. When given prior to the test, AP5 did not affect retention. AP5 did not affect training performance, and a control experiment showed that the impairing effects were not due to alterations in footshock sensitivity. The results suggest that NMDA receptor activation in the BLA is involved in the formation, but not the expression, of memory for inhibitory avoidance in rats. However, the results do not necessarily imply that the role of NMDA receptors in the BLA is to mediate long-term storage of fear-motivated memory within the amygdala.