808 resultados para Information extraction strategies
Resumo:
This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
Resumo:
A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of 10^5, 10^2 and 10^0 sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of 10^-2, 10^-1 and 10^0 Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.
Resumo:
This study investigates the use of unsupervised features derived from word embedding approaches and novel sequence representation approaches for improving clinical information extraction systems. Our results corroborate previous findings that indicate that the use of word embeddings significantly improve the effectiveness of concept extraction models; however, we further determine the influence that the corpora used to generate such features have. We also demonstrate the promise of sequence-based unsupervised features for further improving concept extraction.
Resumo:
Automatically determining and assigning shared and meaningful text labels to data extracted from an e-Commerce web page is a challenging problem. An e-Commerce web page can display a list of data records, each of which can contain a combination of data items (e.g. product name and price) and explicit labels, which describe some of these data items. Recent advances in extraction techniques have made it much easier to precisely extract individual data items and labels from a web page, however, there are two open problems: 1. assigning an explicit label to a data item, and 2. determining labels for the remaining data items. Furthermore, improvements in the availability and coverage of vocabularies, especially in the context of e-Commerce web sites, means that we now have access to a bank of relevant, meaningful and shared labels which can be assigned to extracted data items. However, there is a need for a technique which will take as input a set of extracted data items and assign automatically to them the most relevant and meaningful labels from a shared vocabulary. We observe that the Information Extraction (IE) community has developed a great number of techniques which solve problems similar to our own. In this work-in-progress paper we propose our intention to theoretically and experimentally evaluate different IE techniques to ascertain which is most suitable to solve this problem.
Resumo:
Learning or writing regular expressions to identify instances of a specific
concept within text documents with a high precision and recall is challenging.
It is relatively easy to improve the precision of an initial regular expression
by identifying false positives covered and tweaking the expression to avoid the
false positives. However, modifying the expression to improve recall is difficult
since false negatives can only be identified by manually analyzing all documents,
in the absence of any tools to identify the missing instances. We focus on partially
automating the discovery of missing instances by soliciting minimal user
feedback. We present a technique to identify good generalizations of a regular
expression that have improved recall while retaining high precision. We empirically
demonstrate the effectiveness of the proposed technique as compared to
existing methods and show results for a variety of tasks such as identification of
dates, phone numbers, product names, and course numbers on real world datasets
Resumo:
The electronic storage of medical patient data is becoming a daily experience in most of the practices and hospitals worldwide. However, much of the data available is in free-form text, a convenient way of expressing concepts and events, but especially challenging if one wants to perform automatic searches, summarization or statistical analysis. Information Extraction can relieve some of these problems by offering a semantically informed interpretation and abstraction of the texts. MedInX, the Medical Information eXtraction system presented in this document, is the first information extraction system developed to process textual clinical discharge records written in Portuguese. The main goal of the system is to improve access to the information locked up in unstructured text, and, consequently, the efficiency of the health care process, by allowing faster and reliable access to quality information on health, for both patient and health professionals. MedInX components are based on Natural Language Processing principles, and provide several mechanisms to read, process and utilize external resources, such as terminologies and ontologies, in the process of automatic mapping of free text reports onto a structured representation. However, the flexible and scalable architecture of the system, also allowed its application to the task of Named Entity Recognition on a shared evaluation contest focused on Portuguese general domain free-form texts. The evaluation of the system on a set of authentic hospital discharge letters indicates that the system performs with 95% F-measure, on the task of entity recognition, and 95% precision on the task of relation extraction. Example applications, demonstrating the use of MedInX capabilities in real applications in the hospital setting, are also presented in this document. These applications were designed to answer common clinical problems related with the automatic coding of diagnoses and other health-related conditions described in the documents, according to the international classification systems ICD-9-CM and ICF. The automatic review of the content and completeness of the documents is an example of another developed application, denominated MedInX Clinical Audit system.
Resumo:
La présente thèse avait pour mandat d’examiner la question suivante : quels sont les indices visuels utilisés pour catégoriser le sexe d’un visage et comment sont-ils traités par le cerveau humain? La plupart des études examinant l’importance de certaines régions faciales pour la catégorisation du sexe des visages présentaient des limites quant à leur validité externe. L’article 1 visait à investiguer l’utilisation des indices achromatiques et chromatiques (sur l’axe xy) dans un contexte de plus grande validité externe. Pour ce faire, nous avons utilisé la technique Bubbles afin d’échantillonner l’espace xy de visages en couleurs n’ayant subi aucune transformation. Afin d’éviter les problèmes liés à la grande répétition des mêmes visages, nous avons utilisé un grand nombre de visages (c.-à-d. 300 visages caucasiens d’hommes et de femmes) et chaque visage n’a été présenté qu’une seule fois à chacun des 30 participants. Les résultats indiquent que la région des yeux et des sourcils—probablement dans le canal blanc-noir—est l’indice le plus important pour discriminer correctement le genre des visages; et que la région de la bouche—probablement dans le canal rouge-vert—est l’indice le plus important pour discriminer rapidement et correctement le genre des visages. Plusieurs études suggèrent qu’un indice facial que nous n’avons pas étudié dans l’article 1—les distances interattributs—est crucial à la catégorisation du sexe. L’étude de Taschereau et al. (2010) présente toutefois des données allant à l’encontre de cette hypothèse : les performances d’identification des visages étaient beaucoup plus faibles lorsque seules les distances interattributs réalistes étaient disponibles que lorsque toutes les autres informations faciales à l’exception des distances interattributs réalistes étaient disponibles. Quoi qu’il en soit, il est possible que la faible performance observée dans la condition où seules les distances interattributs étaient disponibles soit explicable non par une incapacité d’utiliser ces indices efficacement, mais plutôt par le peu d’information contenue dans ces indices. L’article 2 avait donc comme objectif principal d’évaluer l’efficacité—une mesure de performance qui compense pour la faiblesse de l’information disponible—des distances interattributs réalistes pour la catégorisation du sexe des visages chez 60 participants. Afin de maximiser la validité externe, les distances interattributs manipulées respectaient la distribution et la matrice de covariance observées dans un large échantillon de visages (N=515). Les résultats indiquent que les efficacités associées aux visages ne possédant que de l’information au niveau des distances interattributs sont un ordre de magnitude plus faibles que celles associées aux visages possédant toute l’information que possèdent normalement les visages sauf les distances interattributs et donnent le coup de grâce à l’hypothèse selon laquelle les distances interattributs seraient cuciale à la discrimination du sexe des visages. L’article 3 avait pour objectif principal de tester l’hypothèse formulée à la fin de l’article 1 suivant laquelle l’information chromatique dans la région de la bouche serait extraite très rapidement par le système visuel lors de la discrimination du sexe. Cent douze participants ont chacun complété 900 essais d’une tâche de discrimination du genre pendant laquelle l’information achromatique et chromatique des visages était échantillonnée spatiotemporellement avec la technique Bubbles. Les résultats d’une analyse présentée en Discussion seulement confirme l’utilisation rapide de l’information chromatique dans la région de la bouche. De plus, l’utilisation d’un échantillonnage spatiotemporel nous a permis de faire des analyses temps-fréquences desquelles a découlé une découverte intéressante quant aux mécanismes d’encodage des informations spatiales dans le temps. Il semblerait que l’information achromatique et chromatique à l’intérieur d’une même région faciale est échantillonnée à la même fréquence par le cerveau alors que les différentes parties du visage sont échantillonnées à des fréquences différentes (entre 6 et 10 Hz). Ce code fréquentiel est compatible avec certaines évidences électrophysiologiques récentes qui suggèrent que les parties de visages sont « multiplexées » par la fréquence d’oscillations transitoires synchronisées dans le cerveau.
Resumo:
Even though the digital processing of documents is increasingly widespread in industry, printed documents are still largely in use. In order to process electronically the contents of printed documents, information must be extracted from digital images of documents. When dealing with complex documents, in which the contents of different regions and fields can be highly heterogeneous with respect to layout, printing quality and the utilization of fonts and typing standards, the reconstruction of the contents of documents from digital images can be a difficult problem. In the present article we present an efficient solution for this problem, in which the semantic contents of fields in a complex document are extracted from a digital image.