995 resultados para Information elicitation
Resumo:
The Scharff-technique is used for eliciting information from human sources. At the very core of the technique is the “illusion of knowing it all” tactic, which aims to inflate a source's perception of how much knowledge an interviewer holds about the event to be discussed. For the current study, we mapped the effects following two different ways of introducing this particular tactic; a traditional way of implementation where the interviewer explicitly states that s/he already knows most of the important information (the traditional condition), and a new way of implementation where the interviewer just starts to present the information that s/he holds (the just start condition). The two versions were compared in two separate experiments. In Experiment 1 (N = 60), we measured the participants’ perceptions of the interviewer's knowledge, and in Experiment 2 (N = 60), the participants’ perceptions of the interviewer's knowledge gaps. We found that participants in the just start condition (a) believed the interviewer had more knowledge (Experiment 1), and (b) searched less actively for gaps in the interviewer's knowledge (Experiment 2), compared to the traditional condition. We will discuss the current findings and how sources test and perceive the knowledge his or her interviewer possesses within a framework of social hypothesis testing.
Resumo:
There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.
Resumo:
This paper studies the impact of belief elicitation on informational efficiency and individual behavior in experimental parimutuel betting markets. In one treatment, groups of eight participants, who possess a private signal about the eventual outcome, play a sequential betting game. The second treatment is identical, except that bettors are observed by eight other participants who submit incentivized beliefs about the winning probabilities of each outcome. In the third treatment, the same individuals make bets and assess the winning probabilities of the outcomes. Market probabilities more accurately reflect objective probabilities in the third than in the other two treatments. Submitting beliefs reduces the favorite-longshot bias and making bets improves the accuracy of elicited beliefs. A level-k framework provides some insights about why belief elicitation improves the capacity of betting markets to aggregate information. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited, or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a form suitable for use as a prior model in Bayesian regression. Potential environmental domains for applying this elicitation tool include habitat modeling, assessing detectability or eradication, ecological condition assessments, risk analysis, and quantifying inputs to complex models of ecological processes. The tool has been developed to be user-friendly, extensible, and facilitate consistent and repeatable elicitation of expert knowledge across these various domains. We demonstrate its application to elicitation for logistic regression in a geographically based ecological context. The underlying statistical methodology is also novel, utilizing an indirect elicitation approach to target expert knowledge on a case-by-case basis. For several elicitation sites (or cases), experts are asked simply to quantify their estimated ecological response (e.g. probability of presence), and its range of plausible values, after inspecting (habitat) covariates via GIS.
Resumo:
Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
Expert elicitation is the process of determining what expert knowledge is relevant to support a quantitative analysis and then eliciting this information in a form that supports analysis or decision-making. The credibility of the overall analysis, therefore, relies on the credibility of the elicited knowledge. This, in turn, is determined by the rigor of the design and execution of the elicitation methodology, as well as by its clear communication to ensure transparency and repeatability. It is difficult to establish rigor when the elicitation methods are not documented, as often occurs in ecological research. In this chapter, we describe software that can be combined with a well-structured elicitation process to improve the rigor of expert elicitation and documentation of the results
Resumo:
Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.
Resumo:
Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Theories of situated cognition indicate that interactive 3D representations of real work environments engage and prime the cognitive state of the viewer. In this paper, our major contribution is to augment a previous process elicitation methodology with virtual world context metadata, drawn from a 3D simulation of the workplace. We present a conceptual and formal approach for representing this contextual metadata, integrated into a process similarity measure that provides hints for the business analyst to use in later modelling steps. Finally, we conclude with examples from two use cases to illustrate the potential abilities of this approach.
Resumo:
Business process models have traditionally been an effective way of examining business practices to identify areas for improvement. While common information gathering approaches are generally efficacious, they can be quite time consuming and have the risk of developing inaccuracies when information is forgotten or incorrectly interpreted by analysts. In this study, the potential of a role-playing approach for process elicitation and specification has been examined. This method allows stakeholders to enter a virtual world and role-play actions as they would in reality. As actions are completed, a model is automatically developed, removing the need for stakeholders to learn and understand a modelling grammar. Empirical data obtained in this study suggests that this approach may not only improve both the number of individual process task steps remembered and the correctness of task ordering, but also provide a reduction in the time required for stakeholders to model a process view.
Resumo:
Information sharing in distance collaboration: A software engineering perspective, QueenslandFactors in software engineering workgroups such as geographical dispersion and background discipline can be conceptually characterized as "distances", and they are obstructive to team collaboration and information sharing. This thesis focuses on information sharing across multidimensional distances and develops an information sharing distance model, with six core dimensions: geography, time zone, organization, multi-discipline, heterogeneous roles, and varying project tenure. The research suggests that the effectiveness of workgroups may be improved through mindful conducts of information sharing, especially proactive consideration of, and explicit adjustment for, the distances of the recipient when sharing information.
Resumo:
Business process models have become an effective way of examining business practices to identify areas for improvement. While common information gathering approaches are generally efficacious, they can be quite time consuming and have the risk of developing inaccuracies when information is forgotten or incorrectly interpreted by analysts. In this study, the potential of a role-playing approach to process elicitation and specification has been examined. This method allows stakeholders to enter a virtual world and role-play actions similarly to how they would in reality. As actions are completed, a model is automatically developed, removing the need for stakeholders to learn and understand a modelling grammar. An empirical investigation comparing both the modelling outputs and participant behaviour of this virtual world role-play elicitor with an S-BPM process modelling tool found that while the modelling approaches of the two groups varied greatly, the virtual world elicitor may not only improve both the number of individual process task steps remembered and the correctness of task ordering, but also provide a reduction in the time required for stakeholders to model a process view.