874 resultados para Information Theory
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. It is suggested, for the probability distribution of the transfer matrix of the conductor, the distribution of maximum information-entropy, constrained by the following physical requirements: 1) flux conservation, 2) time-reversal invariance and 3) scaling, with the length of the conductor, of the two lowest cumulants of ζ, where = sh2ζ. The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. For the probability distribution of the transfer matrix R of the conductor we propose a distribution of maximum information entropy, constrained by the following physical requirements: (1) flux conservation, (2) time-reversal invariance, and (3) scaling with the length of the conductor of the two lowest cumulants of ω, where R=exp(iω→⋅Jbhat). The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
In this thesis we uncover a new relation which links thermodynamics and information theory. We consider time as a channel and the detailed state of a physical system as a message. As the system evolves with time, ever present noise insures that the "message" is corrupted. Thermodynamic free energy measures the approach of the system toward equilibrium. Information theoretical mutual information measures the loss of memory of initial state. We regard the free energy and the mutual information as operators which map probability distributions over state space to real numbers. In the limit of long times, we show how the free energy operator and the mutual information operator asymptotically attain a very simple relationship to one another. This relationship is founded on the common appearance of entropy in the two operators and on an identity between internal energy and conditional entropy. The use of conditional entropy is what distinguishes our approach from previous efforts to relate thermodynamics and information theory.
Resumo:
Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Resumo:
The analytic advantages of central concepts from linguistics and information theory, and the analogies demonstrated between them, for understanding patterns of retrieval from full-text indexes to documents are developed. The interaction between the syntagm and the paradigm in computational operations on written language in indexing, searching, and retrieval is used to account for transformations of the signified or meaning between documents and their representation and between queries and documents retrieved. Characteristics of the message, and messages for selection for written language, are brought to explain the relative frequency of occurrence of words and multiple word sequences in documents. The examples given in the companion article are revisited and a fuller example introduced. The signified of the sequence stood for, the term classically used in the definitions of the sign, as something standing for something else, can itself change rapidly according to its syntagm. A greater than ordinary discourse understanding of patterns in retrieval is obtained.
Resumo:
An analogy is established between the syntagm and paradigm from Saussurean linguistics and the message and messages for selection from the information theory initiated by Claude Shannon. The analogy is pursued both as an end itself and for its analytic value in understanding patterns of retrieval from full text systems. The multivalency of individual words when isolated from their syntagm is contrasted with the relative stability of meaning of multi-word sequences, when searching ordinary written discourse. The syntagm is understood as the linear sequence of oral and written language. Saussureâ??s understanding of the word, as a unit which compels recognition by the mind, is endorsed, although not regarded as final. The lesser multivalency of multi-word sequences is understood as the greater determination of signification by the extended syntagm. The paradigm is primarily understood as the network of associations a word acquires when considered apart from the syntagm. The restriction of information theory to expression or signals, and its focus on the combinatorial aspects of the message, is sustained. The message in the model of communication in information theory can include sequences of written language. Shannonâ??s understanding of the written word, as a cohesive group of letters, with strong internal statistical influences, is added to the Saussurean conception. Sequences of more than one word are regarded as weakly correlated concatenations of cohesive units.
Resumo:
This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.