972 resultados para Information Gene
Resumo:
Use of modern object-oriented methods of designing of information systems (IS) both descriptions of interrelations IS and automated with its help business-processes of the enterprises leads to necessity of construction uniform complete IS on the basis of set of local models of such system. As a result of use of such approach there are the contradictions caused by inconsistency of actions of separate developers IS with each other and that is much more important, inconsistency of the points of view of separate users IS. Besides similar contradictions arise while in service IS at the enterprise because of constant change separate business- processes of the enterprise. It is necessary to note also, that now overwhelming majority IS is developed and maintained as set of separate functional modules. Each of such modules can function as independent IS. However the problem of integration of separate functional modules in uniform system can lead to a lot of problems. Among these problems it is possible to specify, for example, presence in modules of functions which are not used by the enterprise to destination, to complexity of information and program integration of modules of various manufacturers, etc. In most cases these contradictions and the reasons, their caused, are consequence of primary representation IS as equilibrium steady system. In work [1] representation IS as dynamic multistable system which is capable to carry out following actions has been considered:
Resumo:
PURPOSE: Myeloma is a clonal malignancy of plasma cells. Poor-prognosis risk is currently identified by clinical and cytogenetic features. However, these indicators do not capture all prognostic information. Gene expression analysis can be used to identify poor-prognosis patients and this can be improved by combination with information about DNA-level changes. EXPERIMENTAL DESIGN: Using single nucleotide polymorphism-based gene mapping in combination with global gene expression analysis, we have identified homozygous deletions in genes and networks that are relevant to myeloma pathogenesis and outcome. RESULTS: We identified 170 genes with homozygous deletions and corresponding loss of expression. Deletion within the "cell death" network was overrepresented and cases with these deletions had impaired overall survival. From further analysis of these events, we have generated an expression-based signature associated with shorter survival in 258 patients and confirmed this signature in data from two independent groups totaling 800 patients. We defined a gene expression signature of 97 cell death genes that reflects prognosis and confirmed this in two independent data sets. CONCLUSIONS: We developed a simple 6-gene expression signature from the 97-gene signature that can be used to identify poor-prognosis myeloma in the clinical environment. This signature could form the basis of future trials aimed at improving the outcome of poor-prognosis myeloma.
Resumo:
A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.
Resumo:
Proteins are biochemical entities consisting of one or more blocks typically folded in a 3D pattern. Each block (a polypeptide) is a single linear sequence of amino acids that are biochemically bonded together. The amino acid sequence in a protein is defined by the sequence of a gene or several genes encoded in the DNA-based genetic code. This genetic code typically uses twenty amino acids, but in certain organisms the genetic code can also include two other amino acids. After linking the amino acids during protein synthesis, each amino acid becomes a residue in a protein, which is then chemically modified, ultimately changing and defining the protein function. In this study, the authors analyze the amino acid sequence using alignment-free methods, aiming to identify structural patterns in sets of proteins and in the proteome, without any other previous assumptions. The paper starts by analyzing amino acid sequence data by means of histograms using fixed length amino acid words (tuples). After creating the initial relative frequency histograms, they are transformed and processed in order to generate quantitative results for information extraction and graphical visualization. Selected samples from two reference datasets are used, and results reveal that the proposed method is able to generate relevant outputs in accordance with current scientific knowledge in domains like protein sequence/proteome analysis.
Resumo:
Despite current enthusiasm for investigation of gene-gene interactions and gene-environment interactions, the essential issue of how to define and detect gene-environment interactions remains unresolved. In this report, we define gene-environment interactions as a stochastic dependence in the context of the effects of the genetic and environmental risk factors on the cause of phenotypic variation among individuals. We use mutual information that is widely used in communication and complex system analysis to measure gene-environment interactions. We investigate how gene-environment interactions generate the large difference in the information measure of gene-environment interactions between the general population and a diseased population, which motives us to develop mutual information-based statistics for testing gene-environment interactions. We validated the null distribution and calculated the type 1 error rates for the mutual information-based statistics to test gene-environment interactions using extensive simulation studies. We found that the new test statistics were more powerful than the traditional logistic regression under several disease models. Finally, in order to further evaluate the performance of our new method, we applied the mutual information-based statistics to three real examples. Our results showed that P-values for the mutual information-based statistics were much smaller than that obtained by other approaches including logistic regression models.
Resumo:
The interleukin 2 (IL-2) gene is subject to two types of regulation: its expression is T-lymphocyte-specific and it is acutely dependent on specific activation signals. The IL-2 transcriptional apparatus integrates multiple types of biochemical information in determining whether or not the gene will be expressed, using multiple diverse transcription factors that are each optimally activated or inhibited by different signaling pathways. When activation of one or two of these factors is blocked IL-2 expression is completely inhibited. The inability of the other, unaffected factors to work is explained by the striking finding that none of the factors interacts stably with its target site in the IL-2 enhancer unless all the factors are present. Coordinate occupancy of all the sites in the minimal enhancer is apparently maintained by continuous assembly and disassembly cycles that respond to the instantaneous levels of each factor in the nuclear compartment. In addition, the minimal enhancer undergoes specific increases in DNase I accessibility, consistent with dramatic changes in chromatin structure upon activation. Still to be resolved is what interaction(s) conveys T-lineage specificity. In the absence of activating signals, the minimal IL-2 enhancer region in mature T cells is apparently unoccupied, exactly as in non-T lineage cells. However, in a conserved but poorly studied upstream region, we have now mapped several novel sites of DNase I hypersensitivity in vivo that constitutively distinguish IL-2 producer type T cells from cell types that cannot express IL-2. Thus a distinct domain of the IL-2 regulatory sequence may contain sites for competence- or lineage-marking protein contacts.
Resumo:
Mode of access: Internet.