212 resultados para Inflorescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis provides new knowledge on an understudied group of grasses, some of which are resurrection grasses (i.e. able to withstand extreme drought). The sole Australian species (Tripogon loliiformis) is morphologically diverse and could be more than one species. This study sought to determine how many species of Tripogon occur in Australia, their relationships to other species in the genus and to two other genera of resurrection grasses (Eragrostiella and Oropetium). Results of the research indicate there is not enough evidence, from DNA sequence data, to warrant splitting up T. loliiformis into multiple species. The extensive morphological diversity seems to be influenced by environmental conditions. The three genera are so closely related that they could be grouped into a single genus. This new knowledge opens up pathways for future investigations, including studying genes responsible for desiccation tolerance and the conservation of native grasses that occur in rocky habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which low temperature affects flowering and fruit set of grapevines are poorly understood, as is the specific response of the grapevine root system and inflorescence to low temperature effects that reduce fruit set. This study aimed to determine the responses of the root system and inflorescence of the grapevine 'Chardonnay' to low temperature (10 degrees C) during flowering, and considered the possible mechanisms of low temperature effects on those parts. Temperature treatments of 10 degrees C or 20 degrees C were imposed to potted 'Chardonnay' grapevines in a glasshouse for up to two weeks during the early stages of flowering. When the root system alone was exposed to 10 degrees C (with the rest of the plant at 20 degrees C) during flowering, the number of attached berries and percentage fruit set were significantly reduced by 50 % than when the root system alone was exposed to 20 degrees C. Whereas, exposure of the inflorescence alone to 10 degrees C (with the rest of the plant at 20 degrees C) delayed flowering, allowed rachis to grow longer, and increased both the number of attached berries (from 22 to 62 per vine) and fruit set (from 8 % to, 20 %), than when the inflorescence alone was exposed to 20 degrees C. This study will enhance our understanding of the possible mechanisms of low temperature effects on grapevine fruit set and productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined effects of shoot pruning (one or two stems) and inflorescence thinning (five or ten flowers per inflorescence) on greenhouse tomato yield and fruit quality were studied during the dry season (DS) and rainy season (RS) in Central Thailand. Poor fruit set, development of undersized (mostly parthenocarpic) fruits, as well as the physiological disorders blossom-end rot (BER) and fruit cracking (FC) turned out to be the prevailing causes deteriorating fruit yield and quality. The proportion of marketable fruits was less than 10% in the RS and around 65% in the DS. In both seasons, total yield was significantly increased when plants were cultivated with two stems, resulting in higher marketable yields only in the DS. While the fraction of undersized fruits was increased in both seasons when plants were grown with a secondary stem, the proportions of BER and FC were significantly reduced. Restricting the number of flowers per inflorescence invariably resulted in reduced total yield. However, in neither season did fruit load considerably affect quantity or proportion of the marketable yield fraction. Inflorescence thinning tended to promote BER and FC, an effect which was only significant for BER in the RS. In conclusion, for greenhouse tomato production under climate conditions as they are prevalent in Central Thailand, the cultivation with two stems appears to be highly recommendable whereas the measures to control fruit load tested in this study did not proof to be advisable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paepalanthus sect. Diphyomene has inflorescences arranged in umbels. The underlying bauplan seems however to be more complex and composed of several distinct subunits. Despite appearing superficially very similar, the morphology and anatomy of the inflorescences can supply useful information for the understanding of the phylogeny and taxonomy of the group. Inflorescences of Paepalanthus erectifolius, Paepalanthus flaccidus, Paepalanthus giganteus, and Paepalanthus polycladus were analyzed in regard to branching pattern and anatomy. In P. erectifolius, P. giganteus and P. polycladus the structure is a tribotryum, with terminal dibotryum, and with pherophylls bearing lateral dibotrya. In P. flaccidus, the inflorescence is a pleiobotryum, with terminal subunit, and without pherophylls. Secondary inflorescences may occur in all species without regular pattern. Especially when grown in sites without a pronounced seasonality, the distinction between enrichment zone (part of the same inflorescence) and new inflorescences may be obscured. The main anatomical features supplying diagnostic and phylogenetic information are as follows: (a) in the elongated axis, the thickness of the epidermal cell walls and the cortex size; (b) in the bracts, the quantity of parenchyma cells (c) in the scapes, the shape and the presence of a pith tissue. Therefore, P. sect. Diphyomene can be divided in two groups; group A is represented by P. erectifolius, P. giganteus and P. polycladus, and group B is represented by P. flaccidus. The differentiation is based in both, inflorescence structure and anatomy. Group A presents a life cycle and anatomical features similar to species of Actinocephalus. Molecular trees also point that these two groups are closely related. However, inflorescence morphology and blooming sequence are different. Species of group B present an inflorescence structure and anatomical features shared with many genera and species in Eriocaulaceae. The available molecular and morphology based phylogenies still do not allow a precise allocation of the group in the bulk of basal species of Paepalanthus collocated in P. sect. Variabiles. The characters described and used here supply however important information towards this goal. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premise of the study: The grass subfamily Anomochlooideae is phylogenetically significant as the sister group to all other grasses. Thus, comparison of their structure with that of other grasses could provide clues to the evolutionary origin of these characters. Methods: We describe the structure, embryology, and development of the flower and partial inflorescence of the monotypic Brazilian grass Anomochloa marantoidea. We compare these features with those of other early-divergent grasses such as Pharus and Streptochaeta and closely related Poales such as Ecdeiocolea. Key results: Anomochloa possesses several features that are characteristic of Poaceae, notably a scutellum, a solid style, reduced stamen number, and an ovary with a single ovule that develops into a single indehiscent fruit. Interpretation of floral patterning in Anomochloa is problematic because the ramification pattern of the florets places the bracts and axes in unusual positions relative to the primary inflorescence axis. Our study indicates that there is a single abaxial carpel in Anomochloa, probably due to a cryptic type of pseudomonomery in Anomochloa that resembles the pseudomonomery of other grasses. On the other hand, the Anomochloa flower differs from the typical grass flower in lacking lodicules and possessing four stamens, in contrast with the tristaminate condition that characterizes many other grasses. Conclusions: Using the median part of the innermost bract as a locator, we tentatively homologize the inner bract of the Anomochloa partial inflorescence with the palea of other grasses. In this interpretation, the pattern of monosymmetry due to stamen suppression differs from that of Ecdeiocolea. © 2012 Botanical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)